• Title/Summary/Keyword: Space Weather Events

Search Result 56, Processing Time 0.02 seconds

Onset time analysis of solar proton events

  • Hwang, Jung-A;Cho, Kyung-Suk;Lee, Jae-Jin;Kocharov, Leon;Krucker, Sam;Kim, Yeon-Han;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2010
  • We analyzed onset times of the largest six solar proton events during 1997-2006 of solar cycle 23, as observed at 1AU by two satellites of GOES/SEM (Geostationary Operational Environmental Satellites/the Space Environment Monitor) and SOHO/ERNE (Solar and Heliospheric Observatory/the Energetic and Relativistic Nuclei and Electron). We adopted the time shifted method suggested by Leon Kocharov and determined the path length by Sam Krucker's fitting method. We found some problems of those methods and tried to improve those. In this presentation, we will give details of the energy spectra of the 6 SPE events from the ERNE/HED, and onset time comparison among the SPE, flare, type II burst, and CME.

  • PDF

CME and radio characteristics of making large solar proton events

  • Hwang, Jung-A;Cho, Kyung-Suk;Bong, Su-Chan;Kim, Su-Jin;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2010
  • We have investigated a relationship among the solar proton events (SPEs), coronal mass ejections (CMEs) and solar flares during the solar cycle 23 (1997-2006). Using 63 SPE dataset, we found that SPE rise time, duration time, and decrease times depend on CME speed and SPE peak intensity depends on the CME earthward direction parameter as well as CME speed and x-ray flare intensity. While inspecting the relation between SPE peak intensity and the CME earthward direction parameter, we found that there are two groups: first group consists of large 6 SPEs (> 10,000 pfu at >10 MeV proton channel of GOES satellite) and shows a very good correlation (cc=0.65) between SPE peak intensity and CME earthward direction parameter. The second group has a relatively weak SPE peak intensity and shows poor correlation between SPE peak intensity and the CME earthward direction parameter (cc=0.01). By investigating characteristics of 6 SPEs in the first group, we found that there are special common conditions of the extremely large proton events (group 1); (1) all the SPEs are associated with very fast halo CME (>1400km/s), (2) they are almost located at disk region, (3) they also accompany large flare (>M7), (4) all they are preceded by another wide CMEs, and (5) they all show helmet streamer nearby the main CME. In this presentation, we will give details of the energy spectra of the 6 SPE events from the ERNE/HED aboard the Solar and Heliospheric Observatory (SOHO), and onset time comparison among the SPE, flare, type II burst, and CME.

  • PDF

Relationship Between Solar Proton Events and Corona Mass Ejection Over the Solar Cycle 23 (태양 주기 23 기간 동안 태양 고에너지 양성자 이벤트와 코로나 물질 방출 사이의 상관관계)

  • Hwang, Jung-A;Lee, Jae-Jin;Kim, Yeon-Han;Cho, Kyung-Suk;Kim, Rok-Sun;Moon, Yong-Jae;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.479-486
    • /
    • 2009
  • We studied the solar proton events (SPEs) associated with coronal mass ejections (CMEs) during the solar cycle 23 (1997-2006). Using 63 SPE dataset, we investigated the relationship among SPE, flare, and CME, and found that (1) SPE rise time and duration time depend on CME speed and the earthward direction parameter of the CME, and (2) the SPE peak intensity depends on CME speed and X-ray Flare intensity. While inspecting the relation between SPE peak intensity and the direction parameter, we found there are two groups: first group consists of large six SPEs (> 10,000 pfu at > 10 MeV proton channel of GOES satellite) and shows strong correlation (cc = 0.65) between SPE peak intensity and CME direction parameter. The second group has a weak intensity and shows poor correlation between SPE peak intensity and the direction parameter (cc = 0.01). By investigating characteristics of the first group, we found that all the SPEs are associated with very fast halo CME (> 1400km/s) and also they are mostly located at central region and within ${\pm}20^{\circ}$ latitude and ${\pm}30^{\circ}$ longitude strip.

Satellite-based In-situ Monitoring of Space Weather: KSEM Mission and Data Application

  • Oh, Daehyeon;Kim, Jiyoung;Lee, Hyesook;Jang, Kun-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.175-183
    • /
    • 2018
  • Many recent satellites have mission periods longer than 10 years; thus, satellite-based local space weather monitoring is becoming more important than ever. This article describes the instruments and data applications of the Korea Space wEather Monitor (KSEM), which is a space weather payload of the GeoKompsat-2A (GK-2A) geostationary satellite. The KSEM payload consists of energetic particle detectors, magnetometers, and a satellite charging monitor. KSEM will provide accurate measurements of the energetic particle flux and three-axis magnetic field, which are the most essential elements of space weather events, and use sensors and external data such as GOES and DSCOVR to provide five essential space weather products. The longitude of GK-2A is $128.2^{\circ}E$, while those of the GOES satellite series are $75^{\circ}W$ and $135^{\circ}W$. Multi-satellite measurements of a wide distribution of geostationary equatorial orbits by KSEM/GK-2A and other satellites will enable the development, improvement, and verification of new space weather forecasting models. KSEM employs a service-oriented magnetometer designed by ESA to reduce magnetic noise from the satellite in real time with a very short boom (1 m), which demonstrates that a satellite-based magnetometer can be made simpler and more convenient without losing any performance.

Solar Activity as a Driver of Space Weather II. Extreme Activity: October-November 2003

  • Jo, Gyeong-Seok;Mun, Yong-Jae;Kim, Rok-Sun;Hwang, Yu-Ra;Kim, Hae-Dong;Jeong, Jong-Gyun;Im, Mu-Taek;Park, Yeong-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.38-38
    • /
    • 2004
  • In this talk, we present a good example of extreme solar and geomagnetic activities from October to November, 2003. These activities are characterized by very large sunspot groups, X-class solar flares, strong particle events, and huge geomagnetic storms. We discuss ground-based and space-based data in terms of space weather scales. We applied the CME propagation models to these events in order to predict the arrivals of heliospheric disturbances. (omitted)

  • PDF

Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006 (2006년 발생한 고속 태양풍과 관련된 정지궤도에서의 상대론적 전자 증가 이벤트)

  • Lee, Sung-Eun;Hwang, Jung-A;Lee, Jae-Jin;Cho, Kyung-Suk;Kim, Khan-Hyuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.439-450
    • /
    • 2009
  • Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs) were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1) High speed stream, (2) Pc5 ULF wave activity, (3) Southward IMF Bz, (4) substorm occurrence, (5) Whistler mode chorus wave, and (6) Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

Development of Empirical Space Weather Models based on Solar Information

  • Moon, Yong-Jae;Kim, Rok-Soon;Park, Jin-Hye;Jin, Kang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.90.1-90.1
    • /
    • 2011
  • We are developing empirical space weather (geomagnetic storms, solar proton events, and solar flares) forecast models based on solar information. These models have been set up with the concept of probabilistic forecast using historical events. Major findings can be summarized as follows. First, we present a concept of storm probability map depending on CME parameters (speed and location). Second, we suggested a new geoeffective CME parameter, earthward direction parameter, directly observable from coronagraph observations, and demonstrated its importance in terms of the forecast of geomagnetic storms. Third, the importance of solar magnetic field orientation for storm occurrence was examined. Fourth, the relationship among coronal hole-CIR-storm relationship has been investigated, Fifth, the CIR forecast based on coronal hole information is possible but the storm forecast is challenging. Sixth, a new solar proton event (flux, strength, and rise time) forecast method depending on flare parameters (flare strength, duration, and longitude) as well as CME parameter (speed, angular width, and longitude) has been suggested. Seventh, we are examining the rates and probability of solar flares depending on sunspot McIntosh classification and its area change (as a proxy of flux change). Our results show that flux emergence greatly enhances the flare probability, about two times for flare productive sunspot regions.

  • PDF

Neutron Monitor as a New Instrument for KSWPC

  • Oh, Su-Yeon;Yi, Yu;Kim, Yong-Kyun;Bieber, John W;Cho, Kyung-Seok
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.34.1-34.1
    • /
    • 2008
  • Cosmic ray (CR)s are energetic particles that are found in space and filter through our atmosphere. They are classified with galactic cosmic ray (GCR)s and solar cosmic ray (SCR)s from their origins. The process of a CR particle colliding with particles in our atmosphere and disintegrating into smaller pions, muons, neutrons, and the like, is called a cosmic ray shower. These particles can be measured on the Earth's surface by neutron monitor (NM)s. Regarding with the space weather, there are common types of short term variation called a Forbush decrease (FD) and a Ground Level Enhancement (GLE). In this talk, we will briefly introduce our recent studies on CRs observed by NM: (1) simultaneity of FD depending on solar wind interaction, (2) an association between GLE and solar proton events, and (3) diurnal variation of the GCR depending on geomagnetic cutoff rigidity. NM will provide a crucial information for the Korea Space Weather Prediction Center (KSWPC).

  • PDF

SOLAR ACTIVITY AND SPACE ENVIRONMENT (태양활동과 우주환경)

  • YUN HONG SIK
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 1999
  • The Earth is exposed to constant outflow of the solar wind from the outer layers of the Sun, and violent transient events taking place from active regions increase the energy flux of both radiation and particles leaving the Sun. Thus the space surrounding the Earth is a highly dynamic environment that responds sensitively to changes in radiation, particles and magnetic field arriving from the Sun. Nowadays, it becomes increasingly important to understand how the physical system of Earth-space works and how the space around the Earth connects to interplanetary space. In the present paper we describe how explosive solar events, such as CME(Coronal Mass Ejection) and flares affect the Earth-space environment and how the space weather reacts to them. Practical consequences are presented to demonstrate why a broader view of Earth's environment is greatly needed to cope with modern day's inhabitation problem in a rapidly developing space age.

  • PDF

Auto-detection of Halo CME Parameters as the Initial Condition of Solar Wind Propagation

  • Choi, Kyu-Cheol;Park, Mi-Young;Kim, Jae-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.315-330
    • /
    • 2017
  • Halo coronal mass ejections (CMEs) originating from solar activities give rise to geomagnetic storms when they reach the Earth. Variations in the geomagnetic field during a geomagnetic storm can damage satellites, communication systems, electrical power grids, and power systems, and induce currents. Therefore, automated techniques for detecting and analyzing halo CMEs have been eliciting increasing attention for the monitoring and prediction of the space weather environment. In this study, we developed an algorithm to sense and detect halo CMEs using large angle and spectrometric coronagraph (LASCO) C3 coronagraph images from the solar and heliospheric observatory (SOHO) satellite. In addition, we developed an image processing technique to derive the morphological and dynamical characteristics of halo CMEs, namely, the source location, width, actual CME speed, and arrival time at a 21.5 solar radius. The proposed halo CME automatic analysis model was validated using a model of the past three halo CME events. As a result, a solar event that occurred at 03:38 UT on Mar. 23, 2014 was predicted to arrive at Earth at 23:00 UT on Mar. 25, whereas the actual arrival time was at 04:30 UT on Mar. 26, which is a difference of 5 hr and 30 min. In addition, a solar event that occurred at 12:55 UT on Apr. 18, 2014 was estimated to arrive at Earth at 16:00 UT on Apr. 20, which is 4 hr ahead of the actual arrival time of 20:00 UT on the same day. However, the estimation error was reduced significantly compared to the ENLIL model. As a further study, the model will be applied to many more events for validation and testing, and after such tests are completed, on-line service will be provided at the Korean Space Weather Center to detect halo CMEs and derive the model parameters.