• 제목/요약/키워드: Space Techniques

검색결과 2,050건 처리시간 0.037초

콘텐츠 소외지역의 만화 아웃리치 프로그램 모델링 연구 (A Study on Comics Outreach Programs for Contents marginalized Areas)

  • 이승진
    • 만화애니메이션 연구
    • /
    • 통권49호
    • /
    • pp.359-382
    • /
    • 2017
  • 콘텐츠는 예술과 트렌드기술의 복합체이다. 콘텐츠 교육은 예술적 감상만이 아닌 트렌드 기술을 체험해 보는 것 또한 몹시 중요한 일이다. 오늘날 많은 기관에서는 대중을 위한 사회교육기관으로서 문화예술를 통한 개인의 삶의 질 향상, 사회통합 실현에 기여하고자 장애인을 대상으로 한 특수교육, 다문화 가정과 외국인, 저소득층 등의 문화소외계층 대상 프로그램 등을 기획/운영하고 있다. 이러한 프로그램은 박물관, 미술관에 국한되어 진행 되고 있으며, 콘텐츠 문화영역은 아직 그 시행이 미비한 상태이다. 소외지역을 위한 문화교류 확대를 위하여 좀 더 다양한 콘텐츠 교육 시행이 필요한 시점이다. 네이버는 이현세 만화가와 <학교로 찾아가는 만화 버스>라는 이름의 아웃리치 프로그램을 진행하고 있다. 만화를 좋아하는 중, 고등학교 학생들을 대상으로 현직 만화/웹툰작가들이 학교로 직접 찾아가 학생들에게 만화에 대한 기본적인 이야기와 만화테크닉을 알려주는 체험 아웃리치 프로그램이다. 하지만 <학교로 찾아가는 만화 버스>는 소외지역 중심이 아닌 서울 경기지역을 중심으로 이루어진다는 점과, '학교'라는 공간적 한계를 지니기 때문에 폭넓게 프로그램의 혜택이 이루어지지 못한다는 점, 작품을 이해하고 공감하기 위한 공간으로서의 체험이 배제 되어 있다는 한계성을 지닌다. '만화 소외지역 아웃리치 프로그램'은 지극히 고정된 단일 체계의 프로그램이 아닌 유동적인 차원으로 새롭게 재구성 되어야 한다. 본인이 가지고 있는 역량과 경험, 지역문화, 종교, 사회 등을 기반으로 만화의 여러가지 전문적 기자재를 직접 이용하여 작품을 제작 체험할 수 있어야 한다. 이러한 프로그램 참여자는 자신의 만화적 경험의 공감과 함께 매력적이고 효과적인 학습의 효과를 얻을 수 있게 될 것이다.

완전히 탈수한 $Ag_{12-2x}Co_x-A$ (x = 3 및 4.5)의 결정구조 (Two Crystal Structures of Fully Dehydrated $Ag_{12-2x}Co_x-A (x = 3 and 4.5)$)

  • 송승환;김덕수;박종열;김은식;김양
    • 대한화학회지
    • /
    • 제32권6호
    • /
    • pp.520-527
    • /
    • 1988
  • $Co^{2+}$ 이온과 $Ag^+$ 이온으로 교환된 제올라이트 A 즉, $Ag_6Co_3-A$(a = 12.131(5)$\AA$) 과 $Ag_3Co_{4.5}$-A(a = 12.145(1)$\AA$)의 결정구조를 X-선 단결정회절법으로 입방공간군 Pm3m을 사용하여 해석하였다. I > 3$\sigma$(I)인 189개의 회절반점을 써서 $Ag_6Co_3-A$구조에 대해서는 R1=0.06, R2 = 0.076까지 정밀화시켰으며 $Ag_6Co_3-A$ 구조에 대해서는 I > 3$\sigma$(I)인 258개의 회절반점을 써서 R1 = 0.045, R2 = 0.041까지 정밀화시켰다. 두 구조 모두 Co(II) 이온은 골조의 3개의 산소와 배위하고 있었고 Co(II)-O(3) 거리는 $Ag_3Co_{4.5}-A$에서는 2.118(4)$\AA$이었고 $Ag_6Co_3-A$에서는 2.106(4)$\AA$이었다. 또 두 구조 모두 O(3)-Co(II)-O(3) 각도는 약 $120^{\circ}$로서 Co(II)와 3개의 O(3)는 거의 이상적인 삼각 평면형의 배열을 갖고 있었다. 단위포당 양이온의 총수가 8개 이상이면 $Ag^+$이온은 8-링 위치에 $Co^{2+}$ 이온은 6-링 위치의 골조산소와 우선적으로 결합한다. Co(II)이온의 수가 단위포당 4.5개 이상이 되면 $Ag_{12-2x}Co_x-A (x > 4.5)$ 결정은 X-선 회절패턴이 없었고, 이것은 $Co^{2+}$ 이온이 $H_2O$분자를 가수분해하여 생성되는 $H^+$이온 농도가 축적되어 제올라이트 골조를 파괴시켰을 것으로 생각된다.

  • PDF

은 이온과 아연 이온으로 치환한 제올라이트 A $(Ag_{2.8}Zn_{4.6}-A)$의 탈수한 결정구조와 이것에 에틸렌을 흡착시킨 결정구조 (Crystal Structures of Dehydrated $Ag^+\;and\;Zn^{2+}$ Exchanged Zeolite A, $(Ag_{2.8}Zn_{4.6}-A)$ and of Its Ethylene Sorption Complex)

  • 정미숙;박종렬;김은식;김양
    • 대한화학회지
    • /
    • 제35권3호
    • /
    • pp.189-195
    • /
    • 1991
  • 탈수한 $(Ag_{2.8}Zn_{4.6}-A)$의 구조와 이 결정에 에틸렌 기체가 흡착된 구조를 X-선 단결정 회절법으로 입방공간군인 Pm3m을 사용하여 구조를 해석하고 정밀화시켰다. $Ag^+$ 이온 및 $Zn^{2+}$ 이온으로 이온교환시킨 두 개의 결정을 400$^{\circ}$C, $2.0{\times}10^{-6}$Torr의 진공하에서 2일간 탈수시킨 후, 그 중 하나의 결정에는 25(1)$^{\circ}$C에서 250 Torr의 에틸렌 기체를 1시간 동안 처리하였다. 탈수한 $Ag_{2.8}ZN_{4.6}-A$ (a = 12.137(2) ${\AA}$)의 결정구조는 I > 3${\sigma}$(I)인 237개의 회절점을 사용하여 $R_w$ 값이 0.044까지 정밀화시켰고, 에틸렌을 흡착시킨 $Ag_{2.8}ZN_{4.6}-A{\cdot}5.6C_2H_4$(a = 12.137(2) ${\AA}$)의 결정구조에서는 301개의 회절점을 사용하여 $R_w$값이 0.050까지 정밀화시켰다. 2.8개의 $Ag^+$ 이온은 에틸렌 분자와 ${\pi}$착물을 형성하며, 6-링 평면에서 큰 동공쪽으로 0.922(2) ${\AA}$이동한 위치에 골조의 산소와 2.240(5)${\AA}$에서 결합하고 있었고, 에틸렌 분자의 탄소원자와 2.290(5)${\AA}$에서 결합하고 있었다. $Zn^{2+}$ 이온은 단위세포단 두 개의 서로 다른 3회 회전축상에 위치하고 있으며, 이 중 2.8개의 $Zn^{2+}$ 이온은 에틸렌 분자와 ${\pi}$착물을 형성하며, (111) 평면에서 큰 동공쪽으로 0.408(2)${\AA}$이동한 위치에 골조의 산소와 결합하고 있었다. $Zn^{2+}$ 이온과 에틸렌 분자의 탄소원자간 결합거리는 2.78(4)${\AA}$이며, 이는 비교적 약한 결합임을 나타낸다.

  • PDF

$Ca^{2+}$ 이온으로 완전히 치환된 제올라이트 X, $Ca_{46}-X$$Ca^{2+}$ 이온과 $K^+$ 이온으로 치환된 제올라이트 X, $Ca_{32}K_{28}-X$를 완전히 진공 탈수한 결정구조 (Crystal Structures of Fully Dehydrated $Ca^{2+}$-Exchanged Zeolite X, $Ca_{46}-X$, and $Ca^{2+}$ and $K^+$-Exchanged Zeolite X, $Ca_{32}K_{28}-X$)

  • 장세복;송승환;김양
    • 대한화학회지
    • /
    • 제39권1호
    • /
    • pp.7-13
    • /
    • 1995
  • $Ca^{2+}$ 이온으로 완전히 치환된 제올라이트 $X(Ca_{46}Al_{92}Si_{100}O_{384})$$Ca^{2+}$ 이온과 $K^+$ 이온으로 치환된 제올라이트 $X(Ca_{46}Al_{92}Si_{100}O_{384})$$360^{\circ}C에서2{\times}10^{-6}$ Torr의 진공하에서 탈수한 구조를 $21^{\circ}C에서$ 입방공간군 Fd3을 사용하여 단결정 X-선 회절법으로 해석하고 구조를 정밀화하였다. 탈수한 $Ca_{46}-X$의 구조는 Full-matrix 최소자승법 정밀화 계산에서 $I>3\sigma(I)인$ 166개의 독립반사를 사용하여 최종오차인자를 R_1=0.096,\;R_2=0.068$까지 정밀화 계산하였고, $Ca_{32}K_{28}-X$의 구조는 130개의 독립반사를 사용하여 R_1=0.078,\;R_2=0.056$까지 정밀화시켰다. 탈수된 $Ca_{46}-X$에서 $Ca^{2+}$ 이온은 점유율이 높은 서로 다른 두개의 자리에 위치하고 있었다. 16개의 $Ca^{2+}$ 이온은 이중 6-산소고리(D6R)의 중심에 위치하였고(자리 I; $(Ca(1)-O(3)=2.51(2)\AA)$, 30개의 $Ca^{2+}$ 이온은 큰 동공쪽으로 약 0.44 $\AA$ 들어간 자리에 위치하고 있다(Ca(2)-O_(2)=2.24(2) $\AA$, $O(2)-Ca(2)-O(2)=119(1)^{\circ}).$ 탈수한 $Ca_{32}K_{28}-X$의 구조에서 모든 $Ca^{2+}$ 이온과 $K^+$ 이온은 4개의 서로 다른 결정학적 자리에 위치하고 있었다 : 16개의 $Ca^{2+}$ 이온은 D6R의 중심에 위치하였고, 다른 16개의 $Ca^{2+}$ 이온과 16개의 $K^+$ 이온은 큰 동공에 있는 자리 II에 각각 위치하고 있었다. 이러한 $Ca^{2+}$ 이온과 $K^+$ 이온은 O(2)의 평면에서 큰 동공쪽으로 약 0.56 $\AA$과 1.54 $\AA$ 들어간 자리에 각각 위치하고 있었다. $(Ca(2)-O(2)=2.29(2)\AA$, $O(2)-Ca(2)-O(2)=119(1)^{\circ}$, $K(1)-O(2)=2.59(2)\AA$, and $O(2)-K(1)-O(2)=99.2(8)^{\circ}).$ 12개의 $K^+$ 이온은 큰 동공에 있는 자리 III에 위치하고 있었다. $(K(2)-O(4)=3.11(6)\AA$ and $O(1)-K(2)-O(1)=128(2)^{\circ}).$

  • PDF

부분적으로 코발트 이온으로 치환한 제올라이트 A를 진공 탈수한 후 칼륨 증기로 반응시킨 3개의 결정구조 (Three Crystal Structures of Dehydrated Partially $Co^{2+}-Exchanged$ Zeolite A Treated with Potassium Vapor)

  • 정미숙;장세복
    • 한국결정학회지
    • /
    • 제15권2호
    • /
    • pp.59-68
    • /
    • 2004
  • 부분적으로 $Co^{2+}$ 이온으로 치환된 제올라이트 A를 진공 탈수한 후 $300^{\circ}C$에서 12시간, 6시간, 2시간 동안 각각 0.6 torr의 K증기로 반응시킨 3개의 구조$(a=12.181(1)\;{\AA},\; a=12.184(1)\;{\AA},\; a=12.215(1)\;{\AA})$$21^{\circ}C$에서 입방공간군 Pm3m를 사용하여 단결정 X-선 회절법으로 해석하고 정밀화한다. K 증기로 반응시킨 3개의 구조는 Full-matrix 최소자승법 정밀화 계산에서 $1>\sigma(I)$인 70, 82, 80개의 독립반사를 각각 사용하여 최종오차인자를 R (weight) = 0.090, 0.091, 0.090까지 각각 정밀화한다. 3개의 구조에서 4개의$Co^{2+}$이온과 4개의 $Na^+$이온모두 K증기에 의해서 환원되어 $Co^{2+}$ 이온과 $Na^+$ 이온은 제올라이트 내에 더 이상 생성되지 않는다. K종류는 5개의 다른 결정학적 자리에 위치하는데 3개의 $K^+$이온은 8-링의 평면에 완전히 채워져 위치하고 약 11.5개의 $K^+$ 이온은 3회 회전축상의 6-링에 위치하고 약 4개는 큰 동공, 4개는 소다라이트 동공, 0.5개는 큰 공동의 4-링과 마주보는 위치에 위치하고 3개의 $K^0$원자는 3회 회전축상의 큰 동공 깊숙이 위치한다. 이들 구조는 제올라이트 A의 소다라이트 동공에서 사면체 $K_4$ (혹은 삼각형 $K_3$) 클라스터를 이루고 있으며 $K_4$ 혹은 $K_3$ 클라스터는 6-링의 3개의 산소와 삼면체로 결합한다. 이들 클라스터의 부분적으로 환원된 이온은 제올라이트 골조 산소와 우선적으로 결합한다. 이들 구조에서 제올라이트 골조의 음전하를 상쇄시키는데 필요한 12개의 $K^+$ 이온보다 많은 단위세포당 14.5개의 K종류가 존재하는데 이들 결과로 $K^0$원자가 흡착되었음을 알 수 있다. 큰 동공 깊숙이 위치한 3개의 $K^0$ 원자는 4개의 큰 동공에 위치한 $K^+$ 이온 중 3개와 결합하여 $K_7^{4+}$클라스터를 형성하며$K_7^{4+}$ 클라스터는 골조산소와 우선적으로 결합한다.

SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용 (VKOSPI Forecasting and Option Trading Application Using SVM)

  • 라윤선;최흥식;김선웅
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.177-192
    • /
    • 2016
  • 기계학습(Machine Learning)은 인공 지능의 한 분야로, 데이터를 이용하여 기계를 학습시켜 기계 스스로가 데이터 분석 및 예측을 하게 만드는 것과 관련한 컴퓨터 과학의 한 영역을 일컫는다. 그중에서 SVM(Support Vector Machines)은 주로 분류와 회귀 분석을 목적으로 사용되는 모델이다. 어느 두 집단에 속한 데이터들에 대한 정보를 얻었을 때, SVM 모델은 주어진 데이터 집합을 바탕으로 하여 새로운 데이터가 어느 집단에 속할지를 판단해준다. 최근 들어서 많은 금융전문가는 기계학습과 막대한 데이터가 존재하는 금융 분야와의 접목 가능성을 보며 기계학습에 집중하고 있다. 그러면서 각 금융사는 고도화된 알고리즘과 빅데이터를 통해 여러 금융업무 수행이 가능한 로봇(Robot)과 투자전문가(Advisor)의 합성어인 로보어드바이저(Robo-Advisor) 서비스를 발 빠르게 제공하기 시작했다. 따라서 현재의 금융 동향을 고려하여 본 연구에서는 기계학습 방법의 하나인 SVM을 활용하여 매매성과를 올리는 방법에 대해 제안하고자 한다. SVM을 통한 예측대상은 한국형 변동성지수인 VKOSPI이다. VKOSPI는 금융파생상품의 한 종류인 옵션의 가격에 영향을 미친다. VKOSPI는 흔히 말하는 변동성과 같고 VKOSPI 값은 옵션의 종류와 관계없이 옵션 가격과 정비례하는 특성이 있다. 그러므로 VKOSPI의 정확한 예측은 옵션 매매에서의 수익을 낼 수 있는 중요한 요소 중 하나이다. 지금까지 기계학습을 기반으로 한 VKOSPI의 예측을 다룬 연구는 없었다. 본 연구에서는 SVM을 통해 일 중의 VKOSPI를 예측하였고, 예측 내용을 바탕으로 옵션 매매에 대한 적용 가능 여부를 실험하였으며 실제로 향상된 매매 성과가 나타남을 증명하였다.

금속담지 ZSM-5 촉매를 사용한 에탄올로부터 방향족 화합물 제조에 관한 제올라이트의 금속성분 및 실리카/알루미나 비의 영향 (Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst)

  • 김한규;양윤철;정광은;김태완;정순용;김철웅;정성화;이관영
    • Korean Chemical Engineering Research
    • /
    • 제51권4호
    • /
    • pp.418-425
    • /
    • 2013
  • 고정층 반응기를 사용하여 상압에서 에탄올로부터 방향족화합물 제조에 관한 ZSM-5 제올라이트의 금속성분 및 실리카/알루미나 비의 영향을 고찰하였으며, 반응온도, 중량공간속도(WHSV), 반응물인 에탄올에 물 및 메탄올 첨가 영향도 검토하였다. 촉매로는 Si/$Al_2$ 비율이 23~280 범위의 상용 ZSM-5에 Zn, La, Cu, Ga 성분을 함침시켜 촉매 활성 및 안전성 테스트에 사용하였다. 촉매의 특성분석을 위해 암모니아 승온탈착 실험($NH_3$-TPD)과 질소 흡-탈착실험을 수행하였다. 실험결과, 방향족화합물의 선택도에 관한 ZSM-5에 함침한 금속성분과 ZSM-5의 Si/$Al_2$비에 크게 영향을 받았는데, 함침금속은 Zn-La > Zn > La > Cu > Ga 순으로 감소하였으며, ZSM-5의 적절한 산점을 가진 Si/$Al_2$=50, 80에서 가장 우수하였다. 최적 반응온도($437^{\circ}C$)와 공간속도($0.8h^{-1}$)에서 방향족화합물의 선택도는 초기 72%에서 30시간 이후 56%로 서서히 감소하는 경향을 나타내었다.

$Ag^+$ 이온으로 완전히 치환되고 탈수된 두개의 제올라이트 X의 결정구조 (Two Crystal Structures of the Vacuum-Dehydrated Fully $Ag^+$-Exchanged Zeolite X)

  • 장세복;박상윤;송승환;정미숙;김양
    • 대한화학회지
    • /
    • 제40권7호
    • /
    • pp.474-482
    • /
    • 1996
  • $Ag^+$ 이온으로 완전히 치환되고 탈수된 두개의 제올라이트 X의 구조(a=24.922${\AA}$, a=24.901(1)${\AA}$)를 21$^{\circ}C$에서 입방공간군 Fd3을 사용하여 단결정 X-선 회절법으로 해석하고 구조를 정밀화하였다. 결정은 $AgNO_3$의 수용액을 사용하여 3일간 흐름법으로 이온 교환하였다. 첫번째 결정은 300$^{\circ}C$에서 $2{\times}10^{-6$torr하에서 2일간 진공 탈수하였다. 두번째 결정은 350$^{\circ}C$에서 진공 탈수하였다. 첫번째 구조는 Full-matrix 최소자승법 정밀화 계산에서 I>3${\sigma}$(I)인 227개의 독립 반사를 사용하여 최종 오차 인자를 $R_1=0.095,\;R_2=0.092$까지 정밀화 계산하였고, 두번째 구조는 334개의 독립 반사를 사용하여 $R_1=0.096,\;R_2=0.087$까지 정밀화시켰다. 첫번째 결정에서 Ag는 서로 다른 5개의 결정학적 자리에 위치하였다. 16개의 $Ag^-$이온은 D6R의 중심에 있는 자리 I를 채우면서 위치하고, 32개의 Ag원자는 D6R의 맞은편에 있는 소다라이트 공동에 있는 자리 I'에 위치하였고, 17개의 $Ag^+$ 이온은 큰 공동에 있는 6-산소 링에서 소다라이트 공동 내의 32-중축을 가진 II'에 위치하고, 15개의 $Ag^+$ 이온은 큰 공동에 32-중축을 가진 II에 위치하고, 나마지 12개의 $Ag^+$이온은 2중축을 약간 벗어난 큰 공동에 있는 III'에 위치하였다. 두번째 결정에서 모든 Ag종은 첫번째 결정과 유사한 자리에 있었다. 자리 I에 16개, 자리 I'에 28개, 자리 II에 16개, 자리 II'에 16개, 자리 III에 6개 또 다른 III'에 6개 모두 88개의 Ag종이 위치하였고 4개의 Ag원자는 탈수중에 골조 밖으로 이동하였다. 이들 결정에서 Ag원자는 소다라이트 공동의 중심에서 사면체의 $Ag_4$ 클라스터를 형성하였다. 이 클라스터는 2개의 $Ag^+$이온과 배위하여 안정화 된다. 클라스터에서 Ag-Ag 거리는 약 3.05.angs.이고 은금속에서 Ag-Ag 거리인 2.89.angs.보다 약간 길었다. 소다라이트 공동에 위치한 자리II에서 적어도 2개의 6-링에 위치한 $Ag^+$이온은 클라스터에 반드시 배위하며, 뒤틀린 팔면체 은 클라스터인($Ag_6)^{2+}$)로 존재한다.

  • PDF

$Ag^+$ 이온과 $Rb^+$ 이온으로 치환된 제올라이트 A ($Ag^{12-x}Rb_{x}-A$, x = 2 및 3) 를 탈수한 결정구조 (Two Crystal Structures of Dehydrated $Ag^+$ and $Rb^+$ Exchanged Zeolite A, $Ag^{12-x}Rb_{x}-A$, x = 2 and 3)

  • 김양;송승환;김덕수;한영욱;박동규
    • 대한화학회지
    • /
    • 제33권1호
    • /
    • pp.18-24
    • /
    • 1989
  • X-선 단결정법으로 탈수한 $Ag_{9}Rb_{3}-A$ (a = 12.278(2)${\AA}$) 와 $Ag_{10}Rb_{2}-A$ (a = 12.286(2)${\AA}$)의 구조를 입방공간군 Pm3m을 써서 해석하였다. $Ag_{9}Rb_{3}-A$의 구조는 I >3${\sigma}$(I)인 회절반점 291개를 이용하여 $R_1$ = 0.064, $R_2$ = 0.060까지 정밀화 시켰으며 $Ag_{10}Rb_{2}-A$의 구조는 416개의 회절반점을 이용하여 $R_1$ = 0.063, $R_2$ = 0.080까지 정밀화 시켰다. 두 구조 모두 단위세포당 하나의 환원된 은 원자가 소다라이트 동공 내에 있으며 이 환원된 은 원자는 소다라이트 동공 1/6개 마다 $Ag_6$로 존재하든가 혹은 모든 소다라이트 동공마다 4mm 대칭성을 가지는 $(Ag_5)^{4+}$ 클러스터로 존재한다. 그 밖에 탈수한 $Ag_{9}Rb_{3}-A$에서는 8개의 $Ag^+$이온은 6-링 중심 3회 회전축 상에 있으며 3개의 $Rb^+$이온은 8-링 중심 $D_{4h}$ 대칭성을 가지고서 위치하고 있다. 또 탈수한 $Ag_{10}Rb_{2}-A$구조에서는 2개의 다른 6-링 $Ag^+$ 이온 즉 7개의 $Ag^+$ 이온은 6-링 평면상에 위치하고 1개의 $Ag^+$이온은 소다라이트 동공 내에 위치한다. 두 개의 서로 다른 8-링 양이온이 있으며 두 개의 $Rb^+$이온은 8-링 중심에 위치하였고 1개의 $Ag^+$이온은 8-링에서 0.1$\AA$ 만큼 큰 동공 쪽으로 이동하여 위치한다. 두 구조에서 보면 $Ag^+$이온은 6-링 위치에 $Rb^+$ 이온은 8-링 위치에 우선적으로 위치한다.

  • PDF

각종 포유동물 갑상선내의 소포방세포에 관한 비교조직학적 연구 (Comparative Histological Study on the Parafollicular Cells of Mammals)

  • 고정식;박상윤
    • 한국동물학회지
    • /
    • 제23권2호
    • /
    • pp.89-108
    • /
    • 1980
  • 본 연구는 포유동물 갑상선내에 출현하는 PF cell의 형태학적 특징을 밝히기 위하여 사람을 비롯한 포유동물 5목 9종 (영장목, 사람; 우제목, 소, 돼지, 흑염소; 식육목, 개; 설치목, 흰쥐, 마우스, 다람쥐; 토끼목, 집토끼)을 재료로 하여 이 세포의 분포상태, 형태 및 염색성을 비교 관찰하여 다음과 같은 결과를 얻었다. 1. PF cell의 출현수는 종에 따라 유의한 차이를 보였으며, 단위면적당 출현수는 개에서 가장 많았으며, 그 다음이 흰쥐, 다람쥐, 마우스, 집토끼, 소, 돼지, 흑염소, 사람의 순서로 적었다. 2. PF cell의 갑상선내의 분포상태를 보면 소, 집토끼, 다람쥐 및 마우스의 경우는 선엽의 부위에 따라 유의한 차이를 보였으며 개, 사람, 돼지, 흑염소 및 흰쥐의 경우는 유의한 차이는 아니나 부위에 따라 다소 차이를 보였다. 개에서는 선엽전체에 걸쳐 비교적 고르게 분포하였고, 흰쥐의 것은 각 부위의 중심부에 모여 있었다. 흑염소와 다람쥐의 것은 후부에 더 많았다. 마우스와 집토끼의 것은 선엽의 중간부에 많이 출현하되 마우스의 것은 주로 중심부에, 집토끼의 것은 후외측부위에 더 많았다. 사람, 소 및 돼지의 것은 중상부와 후상부에 많이 분포하되 사람과 소의 것은 주로 중심부에 더 모여 있었으며 돼지의 것은 곳곳에 밀집되어 나타났다. 3. PF cell의 출현 위치관계를 보면 개의 경우는 대부분 소포사이에 위치하며 무리를 이루는 경우가 많았지만, 집토끼의 것은 소포내 또는 소포질과 소포사이의 결합조직내에 두루 분포하되 무리를 이루고 있는 것이 자주 관찰되었고, 사람, 소, 돼지, 흑염소, 흰쥐, 마우스 및 다람쥐의 경우는 대부분 소포내 또는 소포곁에 낱개로 산재하였다. 4. PF cell의 모습은 식육목인 개의 것만 구형 또는 난원형이고 기타 동물의 것들은 방추형, 원추형, 난원형, 구형 및 세포질 돌기를 가진 세장형등 매우 다양한 모습이었다. 5. 세포의 크기는 소, 개 및 돼지의 것이 다소 크고, 집토끼, 사람 및 흑염소의 것이 중등대였으며 흰쥐, 마우스 및 다람쥐의 것이 다소 작은 편이었다. 6. PF cell내에 함유되어 있는 분비과립의 양에 따른 형별 세포의 출현비율에서 볼때 다과립형 세포가 많은 동물은 돼지, 소, 개 및 다람쥐였고, 희과립형 세포가 많은 동물은 마우스, 흰쥐 및 사람이었다. 7. 은친화성 도은법에서는 모든 동물에서 양성 반응을 볼 수 없었으나, 기타 3가지 염색법에서는 종에 따라 차이는 보이나 모두 양성 반응을 보였다. 즉, 개, 소 및 돼지의 PF cell은 3가지 염색에서 모두 중등도 이상의 강한 양성 반응을 보였고, 흑염소의 것은 Grimelius 은호성 도은법과 HCl-toluidine blue법에서, 집토끼와 다람쥐의 것은 HCl-toluidine blue 법에서, 흰쥐의 것은 Grimelius 은호성 도은법과 HCl-lead hematoxylin법에서, 마우스의 것은 HCl-lead hematoxylin법과 HCl-toluidine blue법에서 중등도 이상의 양성반응을 보였으며, 사람의 것은 3가지 염색법에서 모두 약한 양성 반응만을 나타내었다. 8. 이상의 소견을 종합하면, PF cell의 분포 위치 및 형태등에 종간의 차이를 볼 수 있었다. 또 조직학적 식별을 위한 염색법에 있어서는 양성 반응도가 다르기 때문에 실험 목적에 따라 염색법을 선택하여야 할 것으로 사료된다.

  • PDF