• Title/Summary/Keyword: Space Partition

Search Result 235, Processing Time 0.026 seconds

A Space Partitioning Based Indexing Scheme Considering, the Mobility of Moving Objects (이동 객체의 이동성을 고려한 공간 분할 색인 기법)

  • Bok, Kyoung-Soo;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.33 no.5
    • /
    • pp.495-512
    • /
    • 2006
  • Recently, researches on a future position prediction of moving objects have been progressed as the importance of the future position retrieval increases. New index structures are required to efficiently retrieve the consecutive positions of moving objects. Existing index structures significantly degrade the search performance of the moving objects because the search operation makes the unnecessary extension of the node in the index structure. To solve this problem, we propose a space partition based index structure considering the mobility of moving objects. To deal with the overflow of a node, our index structure first merges it and the sibling node. If it is impossible to merge them, our method splits the overflow node in which moving properties of objects are considered. Our index structure is always partitioned into overlap free subregions when a node is split. Our split strategy chooses the split position by considering the parameters such as velocities, the escape time of the objects, and the update time of a node. In the internal node, the split position Is determined from preventing the cascading split of the child node. We perform various experiments to show that our index structure outperforms the existing index structures in terms of retrieval performance. Our experimental results show that our proposed index structure achieves about $17%{\sim}264%$ performance gains on current position retrieval and about $107%{\sim}19l%$ on future position retrieval over the existing methods.

The Effect on the Characteristics of Urban Storm Runoff due to the Space Allocation of Design Rainfall and the Partition of the Subbasin (도시유역에서의 강우 공간분포 및 소유역분할이 유출특성에 미치는 영향)

  • Lee, Jong-Tae;Lee, Sang-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.2
    • /
    • pp.177-191
    • /
    • 1997
  • The influences of the space allocation of design rainfall and partition of the subbasin on the characteristics of urban storm runoff was investigated for the 6 drainage basins by applying SWMM model. It show the deviation of -54.68∼18.77% in the peak discharge when we applied the composed JUFF quantiles to the two zones which are divided by upper and lower region of the basin. Then it is compared with the value for the case of using uniform rainfall distribution all over the drainage. Therefore, it would be helpful to decrease the flood risk when we adopt the space distribution of the design rainfall. The effects of the partitioning the drainage on the computing result shows various responses because of the surface characteristics of the each basin such as slope, imperviousness ratio, buy we can get closer result to the measured value as we make the subbasin detailed. If we use the concept of the skewness and area ratio when we determine the width of subbasin, we can improve the computed result even with fewer number of subbasins. We expect reasonable results which close into the measured results in the range of relative error, 25%, when we divide the basin into more than 3 subbasins and the total urban drainage area is less than 10$\textrm{km}^2$.

  • PDF

The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization (퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.970-976
    • /
    • 2007
  • In this study, Polynomial Network Pattern Classifier(PNC) based on Fuzzy Inference Mechanism is designed and its parameters such as learning rate, momentum coefficient and fuzzification coefficient are optimized by means of Particle Swarm Optimization. The proposed PNC employes a partition function created by Fuzzy C-means(FCM) clustering as an activation function in hidden layer and polynomials weights between hidden layer and output layer. Using polynomials weights can help to improve the characteristic of the linear classification of basic neural networks classifier. In the viewpoint of linguistic analysis, the proposed classifier is expressed as a collection of "If-then" fuzzy rules. Namely, architecture of networks is constructed by three functional modules that are condition part, conclusion part and inference part. The condition part relates to the partition function of input space using FCM clustering. In the conclusion part, a polynomial function caries out the presentation of a partitioned local space. Lastly, the output of networks is gotten by fuzzy inference in the inference part. The proposed PNC generates a nonlinear discernment function in the output space and has the better performance of pattern classification as a classifier, because of the characteristic of polynomial based fuzzy inference of PNC.

Characteristics of Gas Furnace Process by Means of Partition of Input Spaces in Trapezoid-type Function (사다리꼴형 함수의 입력 공간분할에 의한 가스로공정의 특성분석)

  • Lee, Dong-Yoon
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2014
  • Fuzzy modeling is generally using the given data and the fuzzy rules are established by the input variables and the space division by selecting the input variable and dividing the input space for each input variables. The premise part of the fuzzy rule is presented by selection of the input variables, the number of space division and membership functions and in this paper the consequent part of the fuzzy rule is identified by polynomial functions in the form of linear inference and modified quadratic. Parameter identification in the premise part devides input space Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the hard clusters. The identification of the consequence parameters, namely polynomial coefficients, of each rule are carried out by the standard least square method. In this paper, membership function of the premise part is dividing input space by using trapezoid-type membership function and by using gas furnace process which is widely used in nonlinear process we evaluate the performance.

Spatial Partitioning using filbert Space Filling Curve for Spatial Query Optimization (공간 질의 최적화를 위한 힐버트 공간 순서화에 따른 공간 분할)

  • Whang, Whan-Kyu;Kim, Hyun-Guk
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.23-30
    • /
    • 2004
  • In order to approximate the spatial query result size we partition the input rectangles into subsets and estimate the query result size based on the partitioned spatial area. In this paper we examine query result size estimation in skewed data. We examine the existing spatial partitioning techniques such as equi-area and equi-count partitioning, which are analogous to the equi-width and equi-height histograms used in relational databases, and examine the other partitioning techniques based on spatial indexing. In this paper we propose a new spatial partitioning technique based on the Hilbert space filling curve. We present a detailed experimental evaluation comparing the proposed technique and the existing techniques using synthetic as well as real-life datasets. The experiments showed that the proposed partitioning technique based on the Hilbert space filling curve achieves better query result size estimation than the existing techniques for space query size, bucket numbers, skewed data, and spatial data size.

A CHANGE OF SCALE FORMULA FOR CONDITIONAL WIENER INTEGRALS ON CLASSICAL WIENER SPACE

  • Yoo, Il;Chang, Kun-Soo;Cho, Dong-Hyun;Kim, Byoung-Soo;Song, Teuk-Seob
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.1025-1050
    • /
    • 2007
  • Let $X_k(x)=({\int}^T_o{\alpha}_1(s)dx(s),...,{\int}^T_o{\alpha}_k(s)dx(s))\;and\;X_{\tau}(x)=(x(t_1),...,x(t_k))$ on the classical Wiener space, where ${{\alpha}_1,...,{\alpha}_k}$ is an orthonormal subset of $L_2$ [0, T] and ${\tau}:0 is a partition of [0, T]. In this paper, we establish a change of scale formula for conditional Wiener integrals $E[G_{\gamma}|X_k]$ of functions on classical Wiener space having the form $$G_{\gamma}(x)=F(x){\Psi}({\int}^T_ov_1(s)dx(s),...,{\int}^T_o\;v_{\gamma}(s)dx(s))$$, for $F{\in}S\;and\;{\Psi}={\psi}+{\phi}({\psi}{\in}L_p(\mathbb{R}^{\gamma}),\;{\phi}{\in}\hat{M}(\mathbb{R}^{\gamma}))$, which need not be bounded or continuous. Here S is a Banach algebra on classical Wiener space and $\hat{M}(\mathbb{R}^{\gamma})$ is the space of Fourier transforms of measures of bounded variation over $\mathbb{R}^{\gamma}$. As results of the formula, we derive a change of scale formula for the conditional Wiener integrals $E[G_{\gamma}|X_{\tau}]\;and\;E[F|X_{\tau}]$. Finally, we show that the analytic Feynman integral of F can be expressed as a limit of a change of scale transformation of the conditional Wiener integral of F using an inversion formula which changes the conditional Wiener integral of F to an ordinary Wiener integral of F, and then we obtain another type of change of scale formula for Wiener integrals of F.

Recursive Fuzzy Partition of Pattern Space for Automatic Generation of Decision Rules (결정규칙의 자동생성을 위한 패턴공간의 재귀적 퍼지분할)

  • 김봉근;최형일
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.28-43
    • /
    • 1995
  • This paper concerns with automatic generation of fuzzy rules which can be used for pattern classification. Feature space is recursively subdivided into hyperspheres, and each hypersphere is represented by its centroid and bounding distance. Fuzzy rules are then generated based on the constructed hyperspheres. The resulting fuzzy rules have very simple premise parts, and they can be organized into a hierarchical structure so that classification process can be implemented very rapidly. The experimented results show that the suggested method works very well compared to other methods.

  • PDF

Design of Pattern Classification Rule based on Local Linear Discriminant Analysis Classifier by using Differential Evolutionary Algorithm (차분진화 알고리즘을 이용한 지역 Linear Discriminant Analysis Classifier 기반 패턴 분류 규칙 설계)

  • Roh, Seok-Beom;Hwang, Eun-Jin;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • In this paper, we proposed a new design methodology of a pattern classification rule based on the local linear discriminant analysis expanded from the generic linear discriminant analysis which is used in the local area divided from the whole input space. There are two ways such as k-Means clustering method and the differential evolutionary algorithm to partition the whole input space into the several local areas. K-Means clustering method is the one of the unsupervised clustering methods and the differential evolutionary algorithm is the one of the optimization algorithms. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods.

Prefix Cuttings for Packet Classification with Fast Updates

  • Han, Weitao;Yi, Peng;Tian, Le
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1442-1462
    • /
    • 2014
  • Packet classification is a key technology of the Internet for routers to classify the arriving packets into different flows according to the predefined rulesets. Previous packet classification algorithms have mainly focused on search speed and memory usage, while overlooking update performance. In this paper, we propose PreCuts, which can drastically improve the update speed. According to the characteristics of IP field, we implement three heuristics to build a 3-layer decision tree. In the first layer, we group the rules with the same highest byte of source and destination IP addresses. For the second layer, we cluster the rules which share the same IP prefix length. Finally, we use the heuristic of information entropy-based bit partition to choose some specific bits of IP prefix to split the ruleset into subsets. The heuristics of PreCuts will not introduce rule duplication and incremental update will not reduce the time and space performance. Using ClassBench, it is shown that compared with BRPS and EffiCuts, the proposed algorithm not only improves the time and space performance, but also greatly increases the update speed.

Multi-Dimensional Vector Approximation Tree with Dynamic Bit Allocation (동적 비트 할당을 통한 다차원 벡터 근사 트리)

  • 복경수;허정필;유재수
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.3
    • /
    • pp.81-90
    • /
    • 2004
  • Recently, It has been increased to use a multi-dimensional data in various applications with a rapid growth of the computing environment. In this paper, we propose the vector approximate tree for content-based retrieval of multi-dimensional data. The proposed index structure reduces the depth of tree by storing the many region information in a node because of representing region information using space partition based method and vector approximation method. Also it efficiently handles 'dimensionality curse' that causes a problem of multi-dimensional index structure by assigning the multi-dimensional data space to dynamic bit. And it provides the more correct regions by representing the child region information as the parent region information relatively. We show that our index structure outperforms the existing index structure by various experimental evaluations.

  • PDF