• Title/Summary/Keyword: Space Launch Vehicle

Search Result 475, Processing Time 0.02 seconds

Nondestructive Inspection of Launch Vehicle Structural Components (우주 발사체 구조 요소의 비파피검사)

  • Kong, Cheol-Won;Youn, Jong-Hoon;Park, Jae-Sung;Eun, Se-Won;Jang, Young-Soon;Yi, Yeong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.331-337
    • /
    • 2009
  • Space launch vehicles require highly reliable, lightweight structures. It is thus important to monitor the structural health of these components with nondestructive inspections. In this paper, we studied an example of a nondestructive inspection that was partially applied to the manufacture and inspection of a launch vehicle. Ultrasonic tests, X-rays, tapping, and acoustic emissions comprised the inspection method. A payload fairing, high pressure tank, fastener part, and bonding part were used as hardware to be inspected. We proposed a quantitative standard for debonding inspection of the payload fairing and acoustic emission data for the proof test of the high pressure tank. We analyzed the fracture mode of the sandwich fastener part according to frequency changes. We also proposed a standard specimen for ultrasonic inspection of bonds of different materials. The present analyses and results provide data for evaluation of the launch operation sequence to ensure launch vehicles afford high reliability.

A Study on the Stress Analysis of Launch Vehicle due to Acoustic Loads (음향 하중에 의한 발사체의 응력해석에 관한 연구)

  • Yeon,Jeong-Heum;Yun,Seong-Gi;Jang,Yeong-Sun;Lee,Yeong-Mu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.91-98
    • /
    • 2003
  • In the structural analysis of a launch vehicle, the construction of loading functions and the determination of responses to them are very important. Among many kinds of loads, acoustic load generated by exhaust is a random load that can be described in a statistical manner. In this study, loading functions corresponding to the acoustic loads are constructed and applied to the structural analysis of launch vehicle. Acoustic loading functions are constructed using source allocation method. Structural analyses are carried out by using finite element modelling and frequency response function of finite element model. The stresses resulting from acoustic loads and acceleration power spectral density functions at interfaces of each section are calculated. These analyses are essential for the development of environmental test specifications and associated dynamic design requirements which are necessary to ensure overall vehicle reliability.

Estimation of Launch Vehicle Tracking Error due to Radio Refraction (레이다 전파굴절에 의한 발사체 추적오차 추정)

  • Seo, Gwang-Gyo;Kim, Yoonsoo;Shin, Vladimir;Song, Ha-Ryong;Choi, Yong-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1076-1083
    • /
    • 2017
  • This paper discusses the error estimation in radar measurement data obtained while tracking a launch vehicle. It is known that typical radar measurement data consist of the true positional or orientation information on the vehicle being tracked, random noise and a deterministic bias due to radio refraction. Unlike previous research works, this paper proposes a tracking-error (mainly bias) estimation method solely based on the single radar measurement with no aid of other measurement such as GPS. The proposed method has been verified with real measurement data obtained while tracking the KSLV-I launch vehicle.

POST LAUNCH MISSION ANALYSIS FOR THE KOMPSAT-1

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jong-Ah
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.285-294
    • /
    • 2000
  • The post-launch mission analysis of the KOMPSAT-1 spacecraft was carried out. The injection accuracy of the Taurus launch vehicle was analyzed by comparison of the target and the realized orbit parameters. The tracking station contact analysis was also performed based on the state vectors applied at the day of launch. The offset angles between the predicted orbit and realized orbit were calculated for various tracking stations. The injection orbit parameters of the KOMPSAT-1 were analyzed for the possible options in Launch and Early Orbit Phase(LEOP) operations. Variations of the Local Time of Ascending Node(LTAN) were also obtained.

  • PDF

KSLV-I 발사 시뮬레이션시스템 개념설계 및 실시간 데이터 처리 시험평가

  • Seo, Jin-Ho;Hong, Il-Hee;Lee, Young-Ho;Chung, Eui-Seung;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.222-231
    • /
    • 2004
  • LCS(Launch Control System) in Space Center performs the ground and flight tests of launch vehicle. Those tests require data monitoring and control functions to the external systems such as launch vehicle, launch pad, and propellant supply system, etc. The LCS is composed of real time control system, simulation system, data server, external network, etc. The purpose of the simulation system is to simulate launch vehicle, and it is used for evaluation test of the LCS. This paper described the simulation system overview, the concept design, and the real time data processing evaluation tests of the simulator, gateway, data distribution server which are constituents of the simulation system.

  • PDF

Post Trajectory Insertion Performance Analysis of Korea Pathfinder Lunar Orbiter Using SpaceX Falcon 9

  • Young-Joo Song;Jonghee Bae;SeungBum Hong;Jun Bang;Donghun Lee
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.123-129
    • /
    • 2023
  • This paper presents an analysis of the trans-lunar trajectory insertion performance of the Korea Pathfinder Lunar Orbiter (KPLO), the first lunar exploration spacecraft of the Republic of Korea. The successful launch conducted on August 4, 2022 (UTC), utilized the SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station. The trans-lunar trajectory insertion performance plays a crucial role in ensuring the overall mission success by directly influencing the spacecraft's onboard fuel consumption. Following separation from the launch vehicle (LV), a comprehensive analysis of the trajectory insertion performance was performed by the KPLO flight dynamics (FD) team. Both orbit parameter message (OPM) and orbit determination (OD) solutions were employed using deep space network (DSN) tracking measurements. As a result, the KPLO was accurately inserted into the ballistic lunar transfer (BLT) trajectory, satisfying all separation requirements at the target interface point (TIP), including launch injection energy per unit mass (C3), right ascension of the injection orbit apoapsis vector (RAV), and declination of the injection orbit apoapsis vector (DAV). The precise BLT trajectory insertion facilitated the smoother operation of the KPLO's remainder mission phase and enabled the utilization of reserved fuel, consequently significantly enhancing the possibilities of an extended mission.

On the Characteristics of Pyroshock Simulator (파이로충격 모사장비 특성분석)

  • Chun, Young-Doo;Im, Jong-Min;Seo, Sang-Hyun;Chung, Eui-Seung;Cho, Gwang-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.172-175
    • /
    • 2005
  • Since, similar to other commercial launch vehicles, various kinds of pyrotechnique devices are used in the KSLV-I(Korea Space Launch Vehicle), the electronic equipment on the vehicle equipment bay is exposed to the sever pyroshock environment during Pyrotechnique device detonation. In order to confirm the survivability of electrical instruments from these pyroshock conditions, shock tests are performed by using a pyroshock simulation during development and qualification phase. In this paper, the pyroshock simulator installed in KARI(Korea Aerospace Research Institute) are briefly introduced, and its performance of pyroshock generating is compared with the measured shock response spectrums from small scaled fairing jettisoning tests. The results show that the pyroshock simulator is still proper to generate severe pyroshocks similar to real pyrotechique detonating conditions, but the redesign on the test jigs is necessary to improve its test performance.

  • PDF

Preliminary Mission Design of Transfer Orbit of a Lunar Lander Launched by a Korean Space Launch Vehicle (국내 발사체를 이용한 달착륙선 발사시 전이 궤도 예비 임무 설계)

  • Song, Eun-Jung;Lee, Sang-il;Choi, iyoung;Sun, Byung-Chan;Roh, Woong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.867-875
    • /
    • 2022
  • The preliminary mission analysis of a lunar lander, which is mounted on the upper stage of a Korean space launch vehicle, is performed when landing on the moon through a trans-lunar injection maneuver after being injected into the earth's low orbit by th launcher in this paper. Both direct landing and orbital landing methods, which have each advantage and disadvantages, are applied and their transfer orbit characteristics are analyzed according to the launch date when launching in lunar October 2030. We also analyzed the launch dates which satisfying eclipse conditions, solar elevation conditions, and tracking time intervals such as the US lunar lander Surveyor-1. The obtained results show that the most appropriate launch date is the 4th day of lunar October in case of direct landing method, and the 3rd day in case of indirect landing method, since the argument of perigee of the trans-lunar injection orbit and eclipse conditions are favorable in the dates.