• Title/Summary/Keyword: Spa sewage

Search Result 3, Processing Time 0.02 seconds

Influence of Spa Sewage on the Water and Soil Pollution and Restoration I. Influence of Spa Sewage on the Pollution of Stream Water and Agricultural Land (온배수 유입 소형하천의 수질 및 토양오염과 회복에 관한 연구: I. 온배수가 인근 소하천과 농업 환경에 미치는 영향)

  • 정연태;이덕배;이경보;김미연;김백호;최민규;박승택
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.337-344
    • /
    • 1999
  • This study was carried out to investigate the influence of spa sewage on water quality and chemical contents in the paddy soil along stream from 1997 to 1998. Concentration of $PO_4, SO_4, Cl, NH_{4}, Ca, Na$ and COD in the spa sewage were lower than standard for agricultural usage, and were lowered as the sewage flew to the into stream. The concentration of $SO_4$in spa sewage was over the criteria for agricultural usage in the inlet, but was lower than criteria for agricultural usage by inlet of non polluted stream water. Concentration of pollutants in the sediment of water channel were the highest in the inlet site. There were no pollutants accumulation in the paddy soil where spa sewage was irrigated. It may be resulted from nutrients uptake of rice plant and self purification of paddy soil. On the while, considering electric conductivity and nitrate in spa sewage, this results suggest that long-term irrigation of the spa sewage may be required general management with some decreasing fertilization.

  • PDF

Reuse of the sewage from sea area using the Submerged Moving Media Complete Mixing Activated Sludge (SMMCMAS) (회전매체를 가진 완전혼합활성슬러지 공법을 이용한 온천지구 하수의 재이용)

  • 김홍태;김학석
    • Journal of Environmental Science International
    • /
    • v.11 no.1
    • /
    • pp.69-74
    • /
    • 2002
  • This study was performed to evaluate an applicability of the SMMCMAS system for reuse of the sewage from spa area and was operated to HLR(Hydraulic loading rate) of 211.3 to 126.8 $\ell$/㎥/d. The operating HRT(Hydraulic retention time) ranges were 2.5 to 1.5 hours. Conclusions are as follows; At the optimum HLR of 158.5 $\ell/\m^2$/d (HRT of 2.0 hours), the maximum BOD removal efficiency was 94% and the effluent BOD concentration was 1.1mg/$\ell$ in result. As the HLR was increased to 211.3 $\ell/\m^2$/d, BOD removal efficiency was decreased to 75% and BOD removal efficiency was also reduced to 74% at lower HLR of 126.8 $\ell/\m^2$/d. It shows that the maximum BOD removal efficiency occurs at an optimum HLR value and that the removal efficiency decreases when the HLR is either higher or lower than the optimum value. Sludge production rates were ranged 0.01 to 0.24gVSS/gBODrem/d and accomplished to 0.01gVSS/gBODrem/d at the optimum HLR of 158.5 $\ell/\m^2$/d.