• Title/Summary/Keyword: Soybean seeds

Search Result 454, Processing Time 0.026 seconds

Development of Molecular Markers to Detect Diaporthe spp. from Decayed Soybean Seeds

  • Seongho Ahn;Nguyen Thi Diem Thuy
    • Mycobiology
    • /
    • v.51 no.6
    • /
    • pp.463-467
    • /
    • 2023
  • Soybean is one of the world's most widely cultivated food crops, and soybean seeds are supplied from national seed resources in Korea. However, the transmission of seed-borne diseases through infected soybean seeds is problematic. Among these diseases, soybean seed decay is caused by Diaporthe spp. Infecting the pods, and the infected seeds show rotting symptoms. Most diseased seeds are removed during the selection process; however, it is difficult to distinguish infected seeds that do not display symptoms. Hence, a sequencebased method was devised to screen Diaporthe-infected seeds. Based on the nuclear ribosomal internal transcribe spacer (ITS) region of the pathogen, a primer was designed to distinguish the infection from other soybean seed pathogens. As a result of the comparison between healthy and Diaporthe-diseased seeds by using the primers, Diaporthe was detected only in the diseased seeds. Therefore, it is possible to distribute healthy soybean seeds by detecting Diaporthe-diseased seeds at the genetic level using the Diaporthe-specific primers.

Comparison of Soyasapogenol A, B Concentrations in Soybean Seeds and Sprouts

  • Kang, Eun-Young;Kim, Seung-Hyun;Kim, Sun-Lim;Seo, Su-Hyun;Kim, Eun-Hye;Song, Hong-Keun;Ahn, Joung-Kuk;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.2
    • /
    • pp.165-176
    • /
    • 2010
  • Soybean seeds contain many biologically active secondary metabolites, such as proteins, saponins, isoflavones, phytic acids, trypsin inhibitors and phytosterols. Among them, saponins in soybeans have attracted considerable interest because of their health benefits. Soyasaponin A and B are the most abundant types of saponins found in soybeans along with soyasapogenol (aglycone), which is a precursor of soyasaponin. The main purpose of this experiment was to determine the concentration of soyasapogenol in soybean seeds and sprouts as a function of seed size, usage, seed coat color and seed cotyledon color. The 79 Korean soybean varieties were cultivated at Yesan of Chungnam in 2006 for the analysis of soyasapogenol using HPLC with Evaporative Light Scattering Detection (ELSD). The total average concentration of soyasapogenol was $1313.52{\mu}g\;g^{-1}$ in soybean seeds and $1377.22{\mu}g\;g^{-1}$ in soybean sprouts. Soybean sprouts were about 5% higher than soybean seeds in average total soyasapogenol concentration. In the process of sprouting, the average soyasapogenol A content decreased by approximately 1.6%, but soyasapogenol B and total soyasapogenol increased by 8.31% and 4.88%, based on the content of soybean seeds. When classified according to the size of seeds, the total soyasapogenol concentration of soybean seeds were not significantly different (p<0.05) On average, small soybean seeds were increased by as much as $103.14{\mu}g\;g^{-1}$ in sprouting process. As a function of the use of the seeds, The total soyasapogenol in soybean seeds were significantly different (p<0.05). While, the soybean sprouts were not significant different (p<0.05). Altogether, sprout soybean seeds show the greatest change in content during the germination process. When seeds with different coat colors were compared, the total soyasapogenol concentration of soybean with yellow seed coats ($1357.30\mu g\;g^{1}$) was slightly higher than that of soybean with black ($1260.30{\mu}g\;g^{-1}$) or brown ($1263.62{\mu}g\;g^{-1}$) seed coats. For the color of the cotyledon, the total soyasapogenol concentration was significantly increased in green cotyledon during the germination and seedling process. The results of this study suggest the functional characteristics of soybeans through quantitative analysis of soyasapogenol. In addition, the concentration of soyasapogenol exhibited a change during the germination process, which was evaluated by the nutritional value of the soybean sprouts.

Investigation of soybean sprout rot and the elimination of improper seeds for quality control on soybean seedlots

  • Lee, Jung Han;Kwak, Youn-Sig
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Soybean sprouts have been a considered a nutrient-rich vegetable for hundreds of years. To evaluate the seedlot quality of soybean sprouts grown, and to evaluate a method for reducing the presence of improper seeds in soybean seedlots, microbes associated with soybean sprout rot were isolated from samples collected. Morphological characteristics and gas chromatography profiles of the cultured fungal and bacterial strains were identified. Eight types of improper seeds were identified: purple stain(Ps), black rot(Br), seed coat black spot(Cb), wrinkled seed(Ws), brown hilum(Bh), seed coat fracture(Cf), unripe seed(Us), and brown seed coat(Bc). The improper seeds were also dipped into 15%, 20%, and 25% NaCl solutions, as well as a saturated solution of NaCl, for 1min. As the NaCl concentration increased, the number of floating improper seeds increased as well. The highest floating rates were observed for the Cf seeds.

Soybean Seeds Damaged by Riptortus Clavatus (Thunberg) Reduce Seed Vigor and Quality of Bean Sprout Produce

  • Oh, Young-Jin;Cho, Sang-Kyun;Kim, Young-Jin;Kim, Kyong-Ho;Paik, Chae-Hoon;Kim, Tae-Soo;Kim, Jung-Gon;Cho, Youngkoo
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.439-447
    • /
    • 2010
  • Riptortus clavatus, one of the many insects in major crops, damages pods and seeds, which reduces seed vigor and viability in soybeans. This study was conducted to examine the effect of diversely damaged seeds by R. clavatus on seed germination and seedling emergence and to determine the association of damaged seed with quality and yield of soybean sprouts. All seeds damaged by R. clavatus significantly (P<0.05) reduced seed vigor as measured by the rates of seed germination, germination speed, and seedling emergence. Mean seed germination rate of non-damaged seeds in sprout-soybean varieties was 97.8%, whereas the rates of seeds damaged at different levels, 31-50% and 51-80%, were 23.0 and 5.4%, respectively. The rates of seedling rot and abnormal, incomplete germination significantly (P<0.05) increased as the amount of seeds damaged by R. clavatus increased to 5, 10 and 15% against the total seeds for sprout production. Yield of soybean sprouts from seeds damaged at different levels decreased up to 13% as compared to that in normal seeds. In customer preferences on soybean sprout produce, 84% of customers participated in survey preferred to purchase sprouts from seeds with 5% of damaged seeds, but sprouts produced from seeds with 15% of damaged seeds were intended to purchase only by 22% of the customers. Areas of the seed damaged by R. clavatus were readily infected by pathogens as the seed germinated, resulted in deteriorated quality and reduced yield of sprout produce.

Response of germination rate and seed moisture contents to storage temperature and frequency of seed banking on seed soybean (Glycine max) for storage period

  • Na, Young-wang;Lee, Young-yi;Yi, Jung-yoon;Son, Eun-ho;Park, Hong-jae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.288-288
    • /
    • 2017
  • The seeds of soybean (Glycine max) were treated with different storage temperature for this study. The seeds of 3 accessions of soybean varieties in aluminum foil pack were used as materials. Storage temperature applied were $-18^{\circ}C$ and room temperature and seed banking (input after 3 days from output) frequencies were every 1, 6, and 12 month respectively for 9 years of storage period. As results seed banking frequency no affected to germination rate and seed moisture contents at $-18^{\circ}C$ storage room for seeds of soybean after 9 years. Germination rate of soybean seeds was changed from 96.2 % to 95.6 % averagely after 9 years of freezing ($-18^{\circ}C$) storage period. There were no differences in decreasing rate by number of seed banking frequency in soybean seeds. On the other hand, at room temperature germination rate of soybean seeds was decreased from 96.2 % to 27.3 % after 9 years which was decreased sharply to 55 % of initial viability after 6 years. The average rate of annual decrease of germination rate in soybean seeds was 38 % of initial viability at room temperature. Initial moisture contents of soybean seeds were 7.3 % and changed to 7.1 % at $-18^{\circ}C$ while it changed from 7.4 % to 7.0 % at room temperature after 9 years of storage period.

  • PDF

Changes of Carnitine Levels during the Germination of Soybean Seeds (콩의 발아에 따른 카르니틴 함량변화)

  • 차연수;김형연;소주련;오석홍
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.762-765
    • /
    • 2000
  • The changes of carnitine levels including nonesterified-carnitine(NEC), acid-soluble acylcarnitine(ASAC) and total carnitine (TC) were investigated in developing soybean sprouts. The concentrations of carnitines were determined in ungerminated and germinated soybean seeds, and in dissected axis segments and cotyledone of the germinated sprouts. Soybean seeds contain 136 nmol of TC per gram dry weight. the contents of NEC, ASAC, and TC were increased during the germination of soybean seeds. The concentrations of NEC and ASAC were highest in cotyledone and inmeristematic tissues, respectively. These data indicate that developmental differences of carnitine levels do exist in plants, and that in delveoping soybean sprouts the levels of NEC and ASAC are highest in the cotyledone and in the youngest meristem, respectively.

  • PDF

Effects of Chitosan on Production and Rot Control of Soybean Sprouts

  • Lee, Young-Sang;Kang, Chang-Sung;Lee, Yong-Sun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.368-372
    • /
    • 1999
  • The practicality of utilizing chitosan as a natural antimicrobial compound to reduce soybean sprout rot was tested. Domestic and imported soybean seeds were soaked for 6 hours in solutions containing different levels of chitosan and acetic acid (glacial), and cultured at $25^{\circ}C$ for 6 days. In case of domestic seeds, soaking with 1,000ppm chitosan increased germination percentage, hypocotyl thickness, total length, and fresh weight of sprouts by 4%, 5%, 2%, and 1%, respectively. The total sprout yield was increased by chitosan in a concentration-dependent manner in that 1,000ppm chitosan resulted in 8% increment of total yield (7.47kg sprouts/kg seed). Chitosan significantly reduced sprout rot percentage to 7.0% compared to control (13.8%), and consequently enhanced marketable sprout yield by 39%. Compared to domestic seeds, the imported soybean seeds exhibited very low germination percentage regardless of chitosan treatments. Chitosan, nevertheless, consistently induced yield increment and rot decrement in imported soybean sprouts. Although 100ppm acetic acid was effective in reducing sprout rot percentage down to 11.8%, its yield-increasing effects were not as prominent as chitosan. In conclusion, soaking soybean seeds with chitosan seems to be a practical method to enhance the efficiency of soybean sprout production.

  • PDF

Effects of Seed Size and Several Factors on Ultra-drying and Germination of Ultra-dried Seeds in Soybean

  • Lee, Yeong-Ho;Chang, Ching-huan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.5
    • /
    • pp.305-309
    • /
    • 2000
  • Ultra-drying [<5.0% seed moisture content (SMC)] storage technique is a cost-effective storage method for oily seeds. To decide proper ultra-drying condition for soybean seeds, drying rate was compared three silica gel to seed ratios, two seed sizes with varietal difference, two kinds of container, and three seed amounts per container under :t 23$\pm$1$^{\circ}C$. When the relative humidity (RH) was reduced at the rate of less than 0.1 % a day, silica gel was replaced with dry one by 47 days. Higher silica gel to seed ratios (3:1 and 2:1) dried faster than lower ratio (1:1) until 28 days, but not after 43 days of drying. Also, large seeded variety was dried faster than small seeded variety. Kinds of container and seed amounts per container didn't show differences in drying of soybean seeds. After completion of ultra-drying, percentage germination by standard germination test (SGT) was not different among silica gel to seed ratios, kinds of container, and seed amounts per container, except among seed sizes (varieties). Before SGT, soybean seeds were premoistened using saturated ${CaCl}_2$ for 48 hours and ${NH}_4$Cl for 24 hours in desiccators. To compare germinability between ordinary-dried seeds and ultra-dried seeds, the seeds of seven soybean varieties, which were varying in size from 8.1 to 34.9 g per 100 seeds, were dried using same amount of silica gel under 23$\pm$1$^{\circ}C$. After completion of 76 days of drying, SMCs were reduced to 3.13-3.45% from 7.86-8.82%. SMC after completion of drying was not correlated with 100-seed weight (r=0.556). Before germination tests, soybean seeds were premoistened using saturated salt solutions. Percentage germination was higher with ultra-dried seeds than ordinary-dried seeds in SGT and higher with ordinary-dried seeds than ultra-dried seeds in AAT at the beginning of storage and after 6 months storage, but general trend of percentage germination was not observed among varieties classified by 100-seed weight. From these results, we concluded that further studies are needed to improve ultra-drying storage method for soybean seeds.

  • PDF

Intra- and Inter-Variation of Protein Content in Soybean Cultivar Seonnogkong (선녹콩 개체간 및 개체내 단백질 함량 변이)

  • Im, Moo-Hyeog;Choung, Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.spc
    • /
    • pp.78-83
    • /
    • 2008
  • Soybean [Glycine max (L.)] is a major source of protein for human and animal feed. Inter- and intra-genotype variation of soybean protein has been investigated by soybean researchers. However, limited sample amount of soybean single seed there is no report that investigated intra-plant variation of soybean protein within soybean plant. Recently a non-destructive NIR (near-infrared reflectance) spectroscopy using single seed grain to analyze seed protein was developed. The objectives of this study were to understand variation of seed protein content within plant and to determine the amount of minimum sample size which can represent protein content for a soybean plant. Frequency distribution of protein content within plant showed normal distribution. There was an intra-cultivar variation for protein content in soybean cultivar Seonnogkong. Difference of protein content among single plants of Seonnokong was recognized at 5% level. Seeds in lower position on plant stem tended to accumulate more protein than in higher position. There was significant difference for protein content between sample size 5 seeds and sample size of more than 5 seeds (10, 20, 30, 40, and 50 seeds) at a soybean plant with 57 seeds however no difference was recognized among sample size (5, 10, 20, and 30 seeds) at a soybean plant with 33 seeds. Around 20% seeds of soybean from single plant needed to determine the protein content to represent protein content of single soybean plant. This study is the first one to report evidence of intra-plant variation for proteincontent which detected by non-destructive NIR spectroscopy using single seed grain in soybean.

Concentration and Immunological Characteristics of Lectin in Soybean (Glycine max L.) Cultivars (대두품종의 렉틴 함량과 면역학적 특성)

  • 박원목;김성환;윤경은
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.4
    • /
    • pp.345-352
    • /
    • 1989
  • The immunochemical property of lectin in soybean and the presence of lectin in seeds of six soybean cultivars were investigated by immunochemical methods. All seeds of six soybean cultivars formed one precipitin line against the soybean lectin antibody and showed immunochemically homologous precipitin pattern among the cultivars in immunodouble diffusion test. Four antigenic components in soybean lectin were detected by the crossed imuno-electrophoresis of a soybean seed antigen against the soybean lectin antibody. Cultivar, Jangyeop-kong contained the highest amount of lectin and the next were Kwangkyo, Hwangkeumkong, Baegunkong, and Jangbaegkong or Paldal-kong in order of lectin content. The lectin purified from the seeds of six soybean cultivars agglutinated rabbit erythrocytes, but did not agglutinate the fungal spores which were Fusarium sp., Alternaria sp., Cuvalaria sp., and Colletotrichum sp. isolated from the infected seeds or leaves of soybean.

  • PDF