• Title/Summary/Keyword: Soybean plant

Search Result 1,171, Processing Time 0.038 seconds

Development of genetic transformation method of Korean soybean (국내콩 형질전환 기술개발)

  • Jeon, Eun-Hee;Chung, Young-Soo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.344-351
    • /
    • 2009
  • Current status of soybean transformation method in Korera was reviewed with recent publications. Most frequently used method for genetic transformation was Agrobacterium-mediated transformation on cotyledonary node which is most popular method used in foreign country. In addition to this, various methods such as sonicationmediated transformation, in planta transformation, and transformation on meristem tissue of germinating seed, have been tried in Korea, even though their efficiencies on repeatability and stability were relatively low. Based on the promising results developed recently by reviewer, several important considerations for successful soybean transformations were suggested. They are 1) proper genotype screening, 2) targeting transformation on exact point, 3) multiple shoot formation, 4) efficient selection pressure, 5) successful shoot elongation, 6) efficient root formation. These are the basic requirements for stable and highly efficient soybean transformation of Korean soybean.

Growth Habit and Protien Content of Various Wild Soybean Strains (각종 야생대두의 생육습성과 단백질함량)

  • Park, Hoon;Hur, Sam-Nam
    • Journal of Plant Biology
    • /
    • v.22 no.1_2
    • /
    • pp.1-4
    • /
    • 1979
  • Wild soybean plants(Glycine ussuriensis) collected from Korea(47 strains) and abroad(41 strains) were grown under field condition and classified according to the growth habit. Seeds were analyzed for protein content. The results were as follows: 1. Wild soybean plants were classified into three groups each by seed size, growth habit of stem, leaf size and flowering time. 2. Seed protein was higher in the strains with large leaves, tendril, stem or late flowering. 3. Glycine gracilis, supposed to be the intermediate species between cultivated and wild soybean(according to the stem growth habit, straight or semitendril, and seed size) was medium in protein content of seeds. 4. The average protein content of Glycine ussuriensis, 43.2%, was highest in comparison with those of others such as G. gracilis, 37.5%, or G. max, 36.2%. 5. One hundred seed weight of Amphicarpaea trisperm, similar to the wild soybean, was almost same as Glycine ussuriensis, but protein content of this species was lower than wild soybeans.

  • PDF

Fluctuation of ATP Content in Soybean and Mungbean Seeds with Germinating Time (콩(Glycine max Merrill) 및 녹두(Phaseolus radiatus L.) 종자의 발아일별 ATP 함량변화)

  • 성민웅
    • Journal of Plant Biology
    • /
    • v.23 no.1
    • /
    • pp.11-15
    • /
    • 1980
  • ATP contents of soybean(Glycine max Merrill) and mungbean (Phaseolus radiatus L.) seeds being germinated with Hoagland solution at $30^{\circ}C$ for 6 days were determined. In pregerminated seed, ATP contents in soybean and mumgbean were 11.4 and 63.0$\mu$g/g fresh seed respectively. During germination, the highest ATP content of soybean seeds was 550% of initial content on 2nd day and that of mungbean was 480% on 1st day after germination. ATP content in cotyledon of soybean and mungbean were increased up to 4th and 1st day after germination respectively, thereafter both were decreased, but those in the root, including the hypocotyl, of both seeds were continuously increased with germination progress.

  • PDF

Effects of Sulfur Fertilizer on the Expression of 11S and 7S Seed Storage Proteins of Soybean

  • El-Shemy Hany A.;Nguyen Nguyen Tran;Ahmed Sherif H.;Fujita Kounosuke
    • Journal of Plant Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • The differential response of soybean cultivars with or without sulfur (S) application was observed under fold conditions. Plant biomass decreased by sulfur deficiency but the reduction was less in Bragg variety about 26 % relative to the control than other ones over 45%, probably due to less reduction in loaves and pods. The photosynthetic rate of Bragg cultivar was also unaffected by the absence of sulfur application while it depressed in other lines. Soybean cultivars were compared in terms of storage protein, protein quality and biomass production by application of sulfur nutrition. The storage protein concentration tended to decrease without sulfur application in all the cultivars, however the differential response of protein quality only by 11S/7S ratio to sulfur nutrition status was observed: For instance, Bragg cultivar had higher biomass and protein production but protein quality decreased at sulfur deficiency. On the other hand, biomass and protein production in other cultivars remained louver at sulfur deficiency but protein quality differed genetically in spite of sulfur nutrition status. These results suggest that the response of soybean to sulfur nutrition is controlled by genotypic difference and sulfur supply status.

Differently expressed genes of soybean by ambient heat stress

  • Jung, Inuk;Kim, Jin Hyeon;Jung, Woosuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.156-156
    • /
    • 2017
  • Plants are grown under constitutive changing of environmental conditions and response to external conditions at both protein and transcription level. The effects of heat on plant growth are broad and influence the yield directly. Heat stresses could be classified depend on intensity and duration. Fundamental changes of growth condition by climate change maybe or maybe not classified as a stress on plant growth. The effects of a short and unanticipated impact of elevated heat on plant could be different with those of under longer extension of ambient heat. To examine differently expressed gene sets by ambient heat stress of soybean, we grow the soybean in normal condition for three weeks. After that, soybean plants move to growth chamber. The temperature of growth chamber increase up to $9^{\circ}C$ for four days. We have extracted mRNA and micro RNA every 24 hours and carried RNA sequence analysis. We found major metabolic pathways affected by ambient heat stress. Mainly carbon metabolism, translation machinery and amino acid synthesis are affected. We discussed the expression patterns of genes of heat sensing and hormone responses.

  • PDF

Differential Responses of Soybean Cultivars to Cercospora sojina Isolates, the Causal Agent of Frogeye Leaf Spot in Korea

  • Kim, Ji-Seong;Lee, Young-Su;Kim, Sung-Kee;Kim, Ki-Deok;Kim, Jin-Won
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.183-186
    • /
    • 2011
  • During the summer of 2005, specimens of soybean cultivars (Daepung, Daewon, Hwanggeum and Taegwang) showing frogeye leaf spot (FLS) were obtained from various areas in Korea. Eight isolates identified as Cercospora sojina were inoculated on the adaxial leaf surfaces of 63 Korean soybean cultivars; the disease responses to each isolate were evaluated 14 days and 21 days after inoculation. Based on the disease responses (resistant or susceptible) of the cultivars by the isolates, a set of cultivars (Anpeong, Bogwang, Cheongdu No. 1, Cheongja No. 3, Dachae, Daemang, Jangwon, Namhae, Sowon, Taegwang) were selected and inoculated with seven isolates for further testing pathogenic variance. Interestingly, 6 out of 7 tested C. sojina isolates revealed differential ability in infecting different soybean cultivars. This result may indicate the possibility of new race occurrence or pathogenic variation; this also presents evidence for prevalent FLS occurrence during humid and hot weather in Korea.

Gene Duplications Revealed during the Process of SNP Discovery in Soybean[Glycine max(L.) Merr.]

  • Cai, Chun Mei;Van, Kyu-Jung;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.237-242
    • /
    • 2007
  • Genome duplication(i.e. polyploidy) is a common phenomenon in the evolution of plants. The objective of this study was to achieve a comprehensive understanding of genome duplication for SNP discovery by Thymine/Adenine(TA) cloning for confirmation. Primer pairs were designed from 793 EST contigs expressed in the roots of a supernodulating soybean mutant and screened between 'Pureunkong' and 'Jinpumkong 2' by direct sequencing. Almost 27% of the primer sets were failed to obtain sequence data due to multiple bands on agarose gel or poor quality sequence data from a single band. TA cloning was able to identify duplicate genes and the paralogous sequences were coincident with the nonspecific peaks in direct sequencing. Our study confirmed that heterogeneous products by the co-amplification of a gene family member were the main cause of obtaining multiple bands or poor quality sequence data in direct sequencing. Counts of amplified bands on agarose gel and peaks of sequencing trace suggested that almost 27% of nonrepetitive soybean sequences were present in as many as four copies with an average of 2.33 duplications per segment. Copy numbers would be underestimated because of the presence of long intron between primer binding sites or mutation on priming site. Also, the copy numbers were not accurately estimated due to deletion or tandem duplication in the entire soybean genome.

  • PDF

Novel TGACG-Motif Binding Protein of Soybean

  • Hong, Jong-Chan
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.40-47
    • /
    • 1996
  • The promoters of a variety of plant genes are characterized by the presence of TGACG motif-containing sequences. These genes often exhibit quite diverse expression characteristics and in many case the TGACG-motif has been demonstrated to be essential for expression. Here we report the isolation and characterization of a soybean cDNA that encodes a novel basic/leucine zipper (bZIP) protein, STF1, that specifically interacts with Hex (TGACGTGG) and CRE (TGACGTCA) sequences. This protein contains a bZIP motif at C-teminus and an acidic domain at N-terminus. DNA binding specificities, heterodimer formation, and expression characteristics of STF1 were compared with a soybean TGA1 protein, STGA1. The soybean STF1 interacts with TGACG-sequences containing an ACGT core, while STGA1 requires TGACG as a sufficient binding sequence. The flanking sequences to the TGACG motif affected DNA binding of STF1 siginificantly. The STF1 mRNA is found mainly in dark grown soybean seedling with higher expression in apical and elongating hypocotyl, while STGA1 mRNA is highly abundant in roots of light grown plants. Furthermore, we demonstrate that STF1 heterodimerzes with G-box binding factorss (GBFs) which was not observed with TGA1. The fact that STF1 possesses both distinct DNA binding speficities and heterodimerization properties suggest that STF1 belongs to a new family of plant bZIP proteins which recognize the Hex/CRE motif.

  • PDF

Natural Hosts and Disease Cycle of Soybean yellow mottle mosaic virus (Soybean yellow mottle mosaic virus의 자연기주와 병환)

  • Lee, Su-Heon;Kim, Chang-Suk
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.281-287
    • /
    • 2013
  • In surveys of weed occurrence undertaken from 2006 to 2007, near to the Daegu experimental fields of the National Institute of Crop Science, plants belonging to 31 families, 74 genera and 96 species were found. For the investigation of the natural or alternative hosts of Soybean yellow mottle mosaic virus (SYMMV), 495 plant samples belonging to 26 families 84 species were subjected to RT-PCR. SYMMV was detected only from legume plants such as Glycine soja, Vigna angularis var. nipponensis, Trifolium repens, and Lespedeza cuneata. Among legume plants tested, more than a third of G. soja (wild soybean) contained SYMMV, indicating that the wild soybean played an important role as a reservoir of SYMMV. Wild soybeans may be infected with SYMMV as early as mid-July. Considering the results of early infection and the high infection rate of seed and seed transmission of SYMMV in G. soja, wild soybeans may have played an important role in the completion of disease cycle of the virus.

Effect of Quizalofop-Ethyl on Glutathione-S-Transferases and Carboxylesterase Activity of Soybean and Corn Plants (Quizalofop-Ethyl이 콩과 옥수수의 Glutathione-S-Transferases와 Carboxylesterase의 활성에 미치는 영향)

  • Kim, Hee-Kwon;Kim, Myoung-Seok;Park, In-Jin;Shu, Yong-Tack
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.365-372
    • /
    • 1997
  • Biochemical characteristics and activities of glutathione-S-transferases(GSTs) and carboxylesterase extracted from soybean and corn plants treated with quizalofop-ethyl were investigated. Km value and Vmax of GSTs extracted from soybean and corn plants were $6.7{\times}10^{-3}M$ nmole/mg/min, 50, 20 nmole/mg/min, respectively. Optimum pH of carboxylesterase from soybean and corn was 7.0. Km value and Vmax of carboxylesterase extracted from soybean and corn plants were $4.2{\times}10^{-4}M$, $2.5{\times}10^{-4}M$ nmole/mg/min, 33, 10 nmole/mg/min, respectively. GSTs and carboxylesterase activity were reduced by quizalofop-ethyl. GSTs and carboxylesterse activity of corn was more reduced than that of soybean. When soybean and corn were treated by 80 ppm of quizalofopethyl. Soybean recovered after 10 days elapsing, but corn withered after 3days elapsing.

  • PDF