• Title/Summary/Keyword: Soybean Meal and Soluble Starch Ratio

Search Result 5, Processing Time 0.017 seconds

Produ cti on of Cyclomaltodextrin from Bacillus stearothermophilus (Bacillus stearothermophilus에 의한 Cyclomaltodextrin Glucanotransferase의 생산)

  • 황진봉;김승호;이태경;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.578-584
    • /
    • 1990
  • A microorganism capable of producing high level of extracelluar cyclomaltodextrin glucanotransferase(EC 2.4.1.19; CGTase) was isolated ’rom soil. The isolated strain No. 239 was identified as Bacillusstearothermophilus. The maximal CGTase production (about 7.0 unitslml) was observed in medium containing2% soluble starch, 0.5% defatted soybean meal, 0.1% NaH_2PO_4.2H_2O$ and 0.015% $ CaC_l2 $ with initial pH 7.0. The strain was cultured at $55^{\circ}C$ for 48 hr with reciprocal shaking. At 0.83% substrated concentration potato starch was the optimum substrate with 50.1% conversion to cyciodextrin (CD)after the reaction at $65^{\circ}C$ for 24 hr (CGTase 10 unitlg starch). Using soluble starch as substrate (5% substrate concentration, CGTase 10 unitlg starch), the maximum conversion of 40% was obtained at11 hr reaction, and the ratio of $\alpha-, \beta-$ and $\gamma$-CD production at this time were 1.0:1.3:0.4, respectively., respectively.

  • PDF

Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

  • Ning, Tingting;Wang, Huili;Zheng, Mingli;Niu, Dongze;Zuo, Sasa;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • Objective: This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR) silage. Methods: The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR) or Leymus chinensis hay (LTMR), corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results: Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens), B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens) in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion: The microbial amylase contributes to starch hydrolysis during the ensiling process in both TMR silages, whereas the microbial hemicellulase participates in the hemicellulose degradation only at the early stage of ensiling.

Effect of Soybean Meal and Soluble Starch on Biogenic Amine Production and Microbial Diversity Using In vitro Rumen Fermentation

  • Jeong, Chang-Dae;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Soriano, Alvin P.;Cho, Kwang Keun;Jeon, Che-Ok;Lee, Sung Sil;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • This study was conducted to investigate the effect of soybean meal (SM) and soluble starch (SS) on biogenic amine production and microbial diversity using in vitro ruminal fermentation. Treatments comprised of incubation of 2 g of mixture (expressed as 10 parts) containing different ratios of SM to SS as: 0:0, 10:0, 7:3, 5:5, 3:7, or 0:10. In vitro ruminal fermentation parameters were determined at 0, 12, 24, and 48 h of incubation while the biogenic amine and microbial diversity were determined at 48 h of incubation. Treatment with highest proportion of SM had higher (p<0.05) gas production than those with higher proportions of SS. Samples with higher proportion of SS resulted in lower pH than those with higher proportion of SM after 48 h of incubation. The largest change in $NH_3$-N concentration from 0 to 48 h was observed on all SM while the smallest was observed on exclusive SS. Similarly, exclusive SS had the lowest $NH_3$-N concentration among all groups after 24 h of incubation. Increasing methane ($CH_4$) concentrations were observed with time, and $CH_4$ concentrations were higher (p<0.05) with greater proportions of SM than SS. Balanced proportion of SM and SS had the highest (p<0.05) total volatile fatty acid (TVFA) while propionate was found highest in higher proportion of SS. Moreover, biogenic amine (BA) was higher (p<0.05) in samples containing greater proportions of SM. Histamines, amine index and total amines were highest in exclusive SM followed in sequence mixtures with increasing proportion of SS (and lowered proportion of SM) at 48 h of incubation. Nine dominant bands were identified by denaturing gradient gel electrophoresis (DGGE) and their identity ranged from 87% to 100% which were mostly isolated from rumen and feces. Bands R2 (uncultured bacterium clone RB-5E1) and R4 (uncultured rumen bacterium clone L7A_C10) bands were found in samples with higher proportions of SM while R3 (uncultured Firmicutes bacterium clone NI_52), R7 (Selenomonas sp. MCB2), R8 (Selenomonas ruminantium gene) and R9 (Selenomonas ruminantium strain LongY6) were found in samples with higher proportions of SS. Different feed ratios affect rumen fermentation in terms of pH, $NH_3$-N, $CH_4$, BA, volatile fatty acid and other metabolite concentrations and microbial diversity. Balanced protein and carbohydrate ratios are needed for rumen fermentation.

Statistical Optimization of Production Medium for Enhanced Production of Itaconic Acid Biosynthesized by Fungal Cells of Aspergillus terreus (Aspergillus terreus에 의해 생합성되는 이타콘산의 생산성 증가를 위한 통계적 생산배지 최적화)

  • Jang, Yong-Man;Shin, Woo-Shik;Lee, Do-Hoon;Kim, Sang-Yong;Park, Chul-Hwan;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.30-40
    • /
    • 2009
  • Statistical optimization of the production medium was carried out in order to find an optimal medium composition in itaconic acid fermentation process. Itaconic acid utilized in the manufacture of various synthetic resins is a dicarboxylic acid biosynthesized by fungal cells of Aspergillus terreus in a branch of the TCA cycle via decarboxylation of cis-aconitate. Through OFAT (one factor at a time) experiments, six components (glucose, fructose, sucrose, soluble starch, soybean meal and cottonseed flour) were found to have significant effects on itaconic production among various carbon- and nitrogen-sources. Hence, using these six factors, interactive effects were investigated via fractional factorial design, showing that the initial concentrations of sucrose and cottonseed flour should be high for enhanced production of itaconic acid. Furthermore, through full factorial design (FFD) experiments, negative effects of $KH_2PO_4$ and $MgSO_4$ on itaconic acid biosynthesis were demonstrated, when excess amounts of the each component were initially added. Based on the FFD analysis, further statistical experiments were conducted along the steepest ascent path, followed by response surface method (RSM) in order to obtain optimal concentrations of the constituent nutrients. As a result, optimized concentrations of sucrose and cottonseed flour were found to be 90.4g/L and 53.8g/L respectively, with the corresponding production level of itaconic acid to be 4.36 g/L (about 7 fold higher productivity as compared to the previous production medium). From these experimental results, it was assumed that optimum ratio of the constituent carbon (sucrose) and nitrogen (cottonseed flour) sources was one of the most important factors for the enhanced production of itaconic acid.

By-product of Tropical Vermicelli Waste as a Novel Alternative Feedstuff in Broiler Diets

  • Rungcharoen, P.;Therdthai, N.;Dhamvithee, P.;Attamangkune, S.;Ruangpanit, Y.;Ferket, P.R.;Amornthewaphat, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1732-1741
    • /
    • 2013
  • Two experiments were conducted to determine physical and chemical properties of vermicelli waste (VW) and effect of VW inclusion levels on growth performance of broilers. In experiment 1, VW samples were randomly collected from vermicelli industry in Thailand to analyze nutritional composition. Vermicelli waste contained 9.96% moisture, 12.06% CP, 32.30% crude fiber (CF), and 0.57% ether extract (EE), as DM basis. The ratio of insoluble:soluble non-starch polysaccharide (NSP) was 43.4:8.9. A total of 120 chicks (6 pens per treatment and 10 chicks per pen) were fed a corn-soybean meal-based diet or 20% VW substituted diet to determine the apparent metabolizable energy corrected for nitrogen retention ($AME_n$) of VW. The $AME_n$ of VW was $1,844.7{\pm}130.71$ kcal/kg. In experiment 2, a total of 1,200 chicks were randomly allotted to 1 of 4 dietary treatments for 42-d growth assay. There were 300 chicks with 6 pens per treatment and 50 chicks per pen. The dietary treatments contained 0%, 5%, 10%, or 15% VW, respectively. All diets were formulated to be isocaloric and isonitrogenous. From 0 to 18 d of age chicks fed VW diets had higher (p<0.001) feed conversion ratio (FCR) compared with those fed the control diet. No difference was observed during grower and finisher phase (19 to 42 d). Chicks fed VW diets had lower relative weight of abdominal fat (p<0.001) but higher relative weight of gizzard (p<0.05) than those of chicks fed the control diet. Increasing VW inclusion levels increased ileal digesta viscosity (p<0.05) and intestinal villus height of chicks (p<0.001). For apparent total tract digestibility assay, there were 4 metabolic cages of 6 chicks that were fed experimental treatment diets (the same as in the growth assay) in a 10-d total excreta collection. Increasing VW inclusion levels linearly decreased (p<0.05) apparent total tract digestibility of DM and CF.