• Title/Summary/Keyword: Southern ocean

Search Result 803, Processing Time 0.024 seconds

Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea (시화호의 중금속 오염과 산화-환원 상태의 공간적 차이)

  • Hyeon, Sang-Min;Kim, Eun-Su;Paeng, U-Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.5
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

Acoustic Target Strength Characteristics of Two Species of Multiple Jellyfishes, Aurelia aurita and Cyanea nozakii, in the Southern Coast of Korea (남해 연안에 분포하는 해파리(Aurelia aurita, Cyanea nozakii)의 복수 개체에 의한 음향 표적강도 특성)

  • Kang, Don-Hyug;Kim, Jung-Hun;Lim, Seon-Ho
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.113-122
    • /
    • 2010
  • Understanding the abundance and distribution of massive jellyfish is necessary to forecast where or when their blooms will happen. The acoustic technique is one of the most useful methods of obtaining information if the acoustic characteristics of the targets are known. This study was conducted to determine the acoustic target strength (TS, dB) of two jellyfish species, Aurelia aurita and Cyanea nozakii, in the southern coast of Korea. For the ex situ measurements, 120, 200, and 420 kHz split beam transducers were used, and jellyfish with various bell lengths were arranged to prepare multiple jellyfish. Under 2 vertical individuals, the mean TS for multiple A. aurita at 120, 200, and 420 kHz was -72.7, -71.7, and -68.2 dB, respectively. In the case of 5 vertical individuals, the mean TS of the species was -71.3, -68.2, and -62.0 dB. Finally, the mean TS of C. nozakii at 120, 200, and 200 kHz was -62.0, -60.3, and -58.2 dB under 2 individuals and -58.1, -57.4, and -54.0 dB under 4 individuals, respectively. For both species, higher numbers of jellyfish resulted in a higher TS. In addition, higher frequencies were associated with a higher TS for the same jellyfish. These TS results for two species can be used as essential data for the acoustic detection of jellyfish in an open ocean or coastal area.

Macrozoobenthic Communities of the Deep Sea Sediments in the Northeastern Pacific Ocean (북동태평양 심해저 퇴적물에 서식하는 대형저서동물의 군집)

  • Choi, Jin-Woo;Kim, Dong-Sung;Hyun, Jung-Ho;Lee, Chang-Hoon
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.367-376
    • /
    • 2004
  • Macrobenthos were collected at 7 stations located from $5^{\circ}N$ to $10^{\circ}N$ with 1o interval along the longitude of $131^{\circ}W$ using a box corer with sampling area of $0.25\;m^2$ in July, 1999. In order to see the vertical distribution of macrobenthos in sediments, each subcore sample was divided into 5 layers with 1 cm interval up to 6 cm depth. Each subcore sample was sieved through 0.3 mm mesh screen and fixed with 10% Rose Bengal added formalin. A total of 22 faunal groups in 11 phyla were sampled and the average density was $959\;{\pm}\;584\;ind./m^2$. Foraminiferans comprised 34.8% of total specimens were the most abundant fauna, and followed by nematodes (27.5%), polychaete worms (15.7%), and benthic harpactoid copepods (10.4%). A latitudinal trend was shown in the distribution of macrobenthos; the maximum density of $1,832\;ind./m^2$ appeared at station N06 and the most poverished community occurred at station N09 with the density of $248\;ind./m^2$. The density of typical macrofaunal taxa except foraminiferans and nematods was $116\;ind./m^2$. In the vertical distribution of macrobenthos, more than 70% of macrobenthos occurred in the upper 2 cm layer, and upper 4 cm layer contained about 90% of macrofauna. Polychaete worms consisted of 22 families, and cirratulid and paraonid worms were dominant polychaete species. The prominant feeding guilds of polychaete worms were SDT (surface, descretely motile, tenaculate feeding) and SMX (surface, motile, non-jawed); they comprised more than 50% of polychaete abundance. These feeding guilds of polychaete worms suggests that the deep sea benthos should be well adapted the newly settled deposits from water column, but this should be clarified by the further studies.

An Analytical Model with Three Sub-Regions for $M_2$ Tide in the Yellow Sea and the East China Sea

  • Jung, Kyung-Tae;Park, Chang-Wook;Oh, Im-Sang;So, Jae-Kwi
    • Ocean Science Journal
    • /
    • v.40 no.4
    • /
    • pp.191-200
    • /
    • 2005
  • In this study an analytical tide model of uniform width with three sub-regions is presented. The three-subregions model takes into account step-like variations in depths in the direction of the channel as a way to examine the $M_2$ tide of the East China Sea (ECS) as well as the Yellow Sea (YS). A modified Proudman radiation condition has been applied at the northern open head, while the sea surface elevation is specified at the southern open boundary. It is seen that, due to the presence of an abrupt change in depth, co-amplitude lines of the $M_2$ tide are splitted to the east and west near the end of the ECS shelf region. Variations in depths, bottom friction and the open head boundary conditions all contribute to the determination of formation of amphidromes as well as overall patterns of $M_2$ tidal distribution. It is seen that increasing water depth and bottom friction in the ECS shelf results in the westward shift of the southern amphidrome. There is however no hint at all of the well-known degenerated tidal pattern being formed. It is inferred that a lateral variation of water depth has to be somehow incorporated to represent the tidal patterns in ECS in a realistic manner. Regarding the radiation factor introduced by Fang et al. (1991), use of a value larger than one, possibly with a phase shift, appears to be a proper way of incorporating the reflected waves from the northern Yellow Sea (NYS).

On the primary productivity in the southern sea of korea (한국남해역(韓國南海域)의 일차생산력(一次生産力))

  • CHUNG, CHANG-SOO;YANG, DONG-BEOM
    • 한국해양학회지
    • /
    • v.26 no.3
    • /
    • pp.242-254
    • /
    • 1991
  • Southern sea of Korea was investigated for primary productivity during four scientific cruises of Korea Ocean research and Development Institute. Frontal structure appeared to be an important physical characteristic in enhancing the phytoplankton production in the study area. Relatively high productivity was occurred near the front between Tsushima Warm Current Water and Coastal Waters of China continent in March 1990 and in November 1989, and near the front between Tsushima Warm Current Water and Korean coastal Water in April 1989. In August 1988 high productive zone was limited to the tidal front off the southwestern coast of Korea. Nutrient supply related to the frontal structure might play a dominant role in increasing the primary productivity but mechanisms of nutrient enrichment are not clear. Average column productivity showed its maximum in April 1989 (1727 mgC/m$^2$/day). In the costal Waters of the china Continent incident light may be an important factor in regulating the regulating the phytoplankton production because of low light penetration rate resulting from high turbidity.

  • PDF

Characteristics of tidal current and tidal induced residual current in the channel between Geumo Island and An Island in the southern waters of Korea (금오도-안도 협수로 해역의 조류 및 조석잔차류 특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.214-227
    • /
    • 2021
  • The distribution of tidal current and tidal induced residual current, topographical eddies and tidal residual circulation in the waters surrounding the Geumo Island-An Island channel were identified through numerical model experiments and vorticity balance analysis. Tidal current flows southwest at flood and northeast at ebb along the channel. The maximum flow velocity was about 100-150 cm/s in neap and spring tide. During the flood current in the neap tide, clockwise small eddies were formed in the waters west of Sobu Island and southwest of Daebu Island, and a more grown eddy was formed in the southern waters of Geumo Island in the spring tide. A small eddy that existed in the western waters of Chosam Island during the ebb in neap tide appeared to be a more grown topographical eddy in the northeastern waters of Chosam Island in spring tide. Tidal ellipses were generally reciprocating and were almost straight in the channel. These topographical eddies are made of vorticity caused by coastal friction when tidal flow passes through the channel. They gradually grow in size as they are transported and accumulated at the end of the channel. When the current becomes stronger, the topographic eddies move, settle, spread to the outer sea and grow as a counterclockwise or clockwise tidal residual circulation depending on the surrounding terrain. In the waters surrounding the channel, there were counterclockwise small tidal residual circulations in the central part of the channel, clockwise from the northeast end of the channel to northwest inner bay of An Island, and clockwise and counterclockwise between Daebu Island and An Island. The circulation flow rate was up to 20-30 cm/s. In the future, it is necessary to conduct an experimental study to understand the growth process of the tidal residual circulation in more detail due to the convergence and divergence of seawater around the channel.

Growth and Production of Pholis nebulosa (Temminck & Schlegel, 1845) in a Seagrass (Zostera marina) Bed of Southern Korea

  • Park, Joo Myun;Kim, Ha Won;Kwak, Seok Nam;Riedel, Ralf
    • Ocean and Polar Research
    • /
    • v.43 no.2
    • /
    • pp.89-98
    • /
    • 2021
  • The seagrass habitats are a highly productive marine ecosystem which provides nursery ground and shelter for many fish and invertebrate species. Pholis nebulosa (Temminck & Schlegel, 1845) is one of the most abundant seagrass fishes in the coastal waters of Korea. The estimation of fish production is key for devising conservation measures and ensuring fish resources sustainability. A total 894 P. nebulosa ranging from 3.83 to 26.5 cm total length (TL) were collected monthly in 2006 with a small beam trawl in a seagrass bed of southern Korea. Growth parameters of P. nebulosa were estimated using the von Bertalanffy growth model, and production was estimated using a general equation which relates daily fish production to ash-free dry weight (AFDW), biomass, and water temperature. The von Bertalanffy's growth equation was estimated as: Lt = 28.3823(1-e-0.7835(t+0.9864)). The densities, biomass, daily, annual production, and P/B ratio were 0.069±0.061/m-2, 1.022±0.621 g/m2, 0.005±0.004 g AFDW/m2/day, 1.676 g AFDW/m2/yr, and 1.641, respectively. Monthly variation in production of P. nebulosa peaked during March and April 2006 (0.0139 and 0.0111 g AFDW/m2/day), whereas the lowest value of 0.0005 g AFDW/m2/day was in December. Monthly change in production of P. nebulosa was positively correlated with biomass and condition factor. Our results will contribute to the conservation of seagrass ecosystems, which are still undisturbed in the study area.

Analysis of Seasonal Morphodynamic Patterns using Delft3D in Anmok Coast (수치모델링을 통한 안목해안에서 계절에 따른 지형변동 패턴 분석)

  • Kim, Mujong;Son, Donghwi;Yoo, Jeseon
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.183-192
    • /
    • 2018
  • In recent years, coastal areas have been suffering from coastal erosion, such as destruction of coastal roads and military facilities. In this study, the Delft3D model was used to analyze the sediment transport pattern due to seasonal characteristics of summer and winter waves in Anmok beach of the East coast. Typhoon and high waves are mainly are coming from ENE direction in the summer season and the flows occur in the northward. In winter, high waves are incident from NE and the flows occur in the southward. These seasonal patterns were simulated by using Delft3D model. As for model input, reanalysis wave data of the past 38 years were used, and the seasonal patterns were analyzed by dividing the whole year into summer and winter season. The grid point of the 38 year reanalysis data is far from the Anmok beach, so the three model grid systems (wide grid -> intermediate grid -> detailed grid) are constructed. Most of the flows in the NW direction occurred in summer, but erosion and deposition was alternated along the coastline. In winter, sediment was deposited near Gangnung Port due to the southern flow and the southern port. Strong winter waves compared to summer tend to cause deposition around Gangnung Port throughout the year.

Inversion Phenomena of Temperature in the Southern Sea of Korea (한국 남해의 수온역전현상)

  • KIM Hee-Joon;YUG Sang-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.111-116
    • /
    • 1983
  • Temperature inversions are investigated by using the oceanographic data (1965-1979) obtained in the Southern Sea of Korea. The temperature inversions in winter occur about six times more frequently than those in sumner. In the west region of the Southern Sea, the inversions are found at any depth in winter. In the east region of the Southern Sea, however, they usually appear in surface layer in winter. Such inversion phenomena in winter can be explained by surface cooling effects associated with a net heat loss at the sea surface and a southward advection of surface cold water due to north-westerly monsoon. In summer the inversion layers are usually formed below the thermocline in the west region of the Southern Sea, and in surface layer in the east region. The former results from the mixing between the Tsushima Warm Current and the Yellow Sea Bottom Cold Water, and the latter is generated by an offshore flow of cold water near coast due to southwesterly wind.

  • PDF

Ocean Response to the Pinatubo and 1259 Volcanic Eruptions

  • Kim, Seong-Joong;Kim, Baek-Min
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.305-323
    • /
    • 2012
  • The ocean's response to the Pinatubo and 1259 volcanic eruptions was investigated using an ocean general circulation model equipped with an energy balance model. Volcanic eruptions release gases into the atmosphere which increases the aerosol optical depth and acts to reduce the incoming short-wave radiation. For example, there was a huge volcanic eruption (Pinatubo) in 1991 which reduced the global mean radiative forcing by about 3 W $m^{-2}$. Two numerical experiments were simulated. The first experiment features the Pinatubo eruption and the second experiment simulates the much larger volcanic eruption that occurred in 1259 when the radiative forcing was reduced by 7 times compared to the Pinatubo event. With the reduced radiative forcing due to the Pinatubo eruption at about 3 W $m^{-2}$ and 1259 eruption at about 21 W $m^{-2}$, the global mean sea surface temperature (SST) decreased to its lowest in the second year after each event by about $0.4^{\circ}C$ and $1.6^{\circ}C$, respectively. Sea surface salinity (SSS) increased substantially in the northern North Pacific, northern North Atlantic, and the Southern Ocean. The reduced SST together with SSS increased ocean convection, which yielded an increase in North Atlantic Deep Water, Antarctic Bottom Water, and North Pacific Intermediate Water production and their outflows. The increase in overturning circulation eventually increased the pole-ward ocean heat fluxes. In conclusion, huge volcanic eruptions perturb the ocean substantially and their hallmarks last for more than a decade, confirming the importance of volcanic eruptions in illustrating the decadal-climate variability recorded in the paleoclimate proxy data for the past million years.