• Title/Summary/Keyword: Southern area

Search Result 2,272, Processing Time 0.027 seconds

Potato-maize double cropping using paddy field in southern plain of Korea

  • Seo, Jong Ho;Hwang, Chung Dong;Yi, Hwi Jong;Choi, Weon Young;Bae, Hyun Kyung;Kim, Sang Yeol;Oh, Meong Kyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.345-345
    • /
    • 2017
  • In order to reduce rice cultivation area in paddy fields and to increase domestic self-sufficiency of imported upland grain, it is necessary to increase double cropping area of upland crops in paddy field in accordance with decrease of rice consumption in Korea. The double cropping of spring potato-summer grain maize can be combined because of enough growing season in the southern plain of Korea. Spring potato, which is profitable, can be planted in the late February and harvested in the late May as the main crop. Subsequent grain maize can be planted in early June and harvested in November (maturity in the early October). Spring potato (variety Soomi) yielded $2,544kg\;10a^{-1}$ (tuber) when planted in late February, 2016. When maize was planted in June as the second cropping crop, though growth of plant decreased much, grain yield decreased slightly compared to normal planting in April or May. There was enough time to dry maize ear in the field after maturity before harvesting, which saved labor and time for grain drying, since there is no autumn planting at the double cropping of spring potato-summer grain maize. When grain maize (variety Gwangpyeongok) was planted in the early June (June $10^{th}$), average grain yield of above $860kg\;10a^{-1}$ over 2 years of 2015 and 2016 was obtained, and the annual total yield (potato tuber + maize grain) of 3,400 kg $10a^{-1}$ was obtained. The result indicates that the double cropping of spring potato-summer maize using paddy fields in southern plain of Korea, could contribute to the self-sufficiency of upland crops through the maximum production.

  • PDF

Rice pasta containing cultivar 'Saemimyeon' with high amylose contents and methods thereof

  • Cho, Jun Hyeon;Lee, Ji Yoon;Lee, Jong Hee;Son, Young Bo;Shin, Dong Jin;Han, Sang Ik;Song, You Chun;Park, Dong Soo;Oh, Myung Kyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.253-253
    • /
    • 2017
  • Recently, strong interest in the well-being and healthy food trends lead a spreading of rice processing products such as rice noodles, rice breads, and rice cakes. However, most of rice varieties developed in Korea showed very limited processing properties in processing of noodles compare to that of wheat flour. Moreover, low competitiveness as a raw processing materials due to high price give poor evaluations for rice noodles processing. To cope those barriers, 'Saemimyeon' a Tongil type high yielding variety with a high amylose contents was developed in RDA. 'Saemimyeon' showed about 10~32 % of increase in yield as 7.08MT/ha and 26.7% of high amylose contents together with easy grinding property of 65.7% of high chalkiness ratio. The both of milled as well as brown rice of 'Saemimyeon' were well fit for processing properties in rice pasta where the contents of rice flour for rice pasta was 99% (1% of Tapioka starch was intermixed in to the rice flour). A spaghetti type for wet noodles and macaroni type for dry noodles were developed, respectively. Each of pasta were showed relatively more or less an equal quality and panel test compare to that of durum wheat pasta products. Finally, rice pasta products could suggest an alternative idea for a new rice processing items where rice noodles market was stagnant.

  • PDF

Determination of Fatty Acid Composition in Peanut Seed by Near Infrared Reflectance Spectroscopy

  • Lee, Jeong Min;Pae, Suk-Bok;Choung, Myoung-Gun;Lee, Myoung-Hee;Kim, Sung-Up;Oh, Eun-young;Oh, Ki-Won;Jung, Chan-Sik;Oh, In Seok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.64-69
    • /
    • 2016
  • This study was conducted to develop a fast and efficient screening method to determine the quantity of fatty acid in peanut oil for high oleate breeding program. A total of 329 peanut samples were used in this study, 227 of which were considered in the calibration equation development and 102 were utilized for validation, using near infrared reflectance spectroscopy (NIRS). The NIRS equations for all the seven fatty acids had low standard error of calibration (SEC) values, while high R2 values of 0.983 and 0.991 were obtained for oleic and linoleic acids, respectively in the calibration equation. Furthermore, the predicted means of the two main fatty acids in the calibration equation were very similar to the means based on gas chromatography (GC) analysis, ranging from 36.7 to 77.1% for oleic acid and 7.1 to 42.7% for linoleic acid. Based on the standard error of prediction (SEP), bias values, and $R^2$ statistics, the NIRS fatty acid equations were accurately predicted the concentrations of oleic and linoleic acids of the validation sample set. These results suggest that NIRS equations of oleic and linoleic acid can be used as a rapid mass screening method for fatty acid content analysis in peanut breeding program.