• Title/Summary/Keyword: South-fixing Sundial

Search Result 2, Processing Time 0.014 seconds

King Sejong′s Scientific Achievements and Astronomical Instruments (세종의 과학과 의표창제)

  • 한영호;남문현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.707-710
    • /
    • 1996
  • During King Sejong's reign in early Chosen Dynasty, the Korean science had been in full bloom. Among the many splendid achievements of the period, though most of them are not extant, astronomical instruments and clocks made for equipping the Royal Observatory are taken as typical works that reflect the characteristics of the King's scientific projects and discussed in the view point that what and how much a well-planned drive and a future-oriented leader can accomplish.

  • PDF

STUDY ON THE RESTORATION MODEL OF JEONGNAM-ILGU, CREATED DURING THE REIGN OF KING SEJONG OF THE JOSEON DYNASTY (조선 세종대에 창제된 정남일구 복원모델 연구)

  • JIWON PARK;BYEONG-HEE MIHN;SANG HYUK KIM;YONG-GI KIM
    • Publications of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Numerous Sundials were fabricated during the reign of King Sejong of the Joseon Dynasty. One among them is Jeongnam-Ilgu (the Fixing-South Sundial), where the time can be measured after setting up the suitable meridian line without a compass. We reconstructed the new Jeongnam-Ilgu model based on the records of 'Description of Making the Royal Observatory Ganui (簡儀臺記)' in the Veritable Record of King Sejong. Jeongnam-Ilgu has a summer solstice half-ring under a horizontal ring which is fixed to two pillars in the north and south, and in which a declination ring rotates around the polar axis. In our model, the polar axis matches the altitude of Hanyang (that is Seoul). There are two merits if the model is designed to install the polar axis in the way that enters both the north and south poles and rotates in them: One is that it is possible to fix the polar axis to the declination ring together with the cross-strut. The other is that a twig for hanging weights can be protruded on the North Pole. The declination ring is supposed to be 178 mm in diameter and is carved on the scale of the celestial-circumference degrees on the ring's surface, where a degree scale can be divided into four equal parts through the diagonal lines. In addition, the time's graduation that is drawn on the summer solstice half-ring makes it possible to measure the daytime throughout the year. An observational property of Jeongnam-Ilgu is that a solar image can be obtained using a pin-hole. The position cast by the solar image between hour circles makes a time measurement. We hope our study will contribute to the restoration of Jeongnam-Ilgu.