• Title/Summary/Keyword: Source node

Search Result 596, Processing Time 0.043 seconds

A Proxy Acknowledgement Mechanism for TCP Variants in Mobile Ad Hoc Networks

  • Oo, May Zin;Othman, Mazliza;O'Farrell, Timothy
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.238-245
    • /
    • 2016
  • A sequence number checking technique is proposed to improve the performance of TCP connections in mobile ad hoc networks. While a TCP connection is initialized, a routing protocol takes the responsibility for checking the hop count between a source and destination pair. If the hop count is greater than a predefined value, the routing protocol decides to use a proxy node. The responsibility of a proxy node is to check the correctness of data packets and inform the missing packets by sending an acknowledgement from a proxy node to the source node. By doing so, the source node is able to retransmit any missing packet in advance without waiting until an end-to-end acknowledgement is received from the destination. Simulation results show that the proposed mechanism is able to increase throughput up to 55% in static network and decrease routing overhead up to 95%in mobile network.

Source-based Multiple Gateway Selection Routing Frotocol in Ad-hoc Networks (애드 흑 네트워크에서 소스 기반 다중 게이트웨이 선출 라우팅 프로토콜)

  • Lee Byung-Jin;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8A
    • /
    • pp.679-687
    • /
    • 2005
  • A mobile ad-hoc network (MANET) is one consisting of a set of mobile hosts capable of communicating with each other without the assistance of base stations. It is necessary to use bandwidth effectively because MANET has limited bandwidth. In this paper, we propose SMGS (source based multiple gateway selection routing protocol). In SMGS, each node estimates its expected life time (ELT) and if its ELT is larger than that of current gateway it becomes a candidate node. When a source node establishes a path, in each grid the candidate node will take the route request and be a gateway node for the each source node. The node that is expected to stay the longest time in the grid is selected so that we can reduce frequent gateway handoff, packet loss, and handoff delay.

The Study Active-based for Improvement of Reliablity In Mobile Ad-hoc Network (이동 애드혹 네트워크에서 신뢰성 향상을 위한 액티브 기반연구)

  • 박경배;강경인;유재휘;김진용
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.188-198
    • /
    • 2002
  • In this paper, we propose an active network to support reliable data transmission in the mobile ad-hoc network. The active network uses DSR(Dynamic Source Routing) protocol as its basic routing protocol, and uses source and destination nodes as key active nodes. For reliable improvement the source node is changed to source active node to add function that its buffer to store the last data with the flow control for data transmission per destination node. The destination node is changed to destination active node to add function that it requests the re-transmission for data that was not previously received by the destination active node with the flow control for data reception per source active node As the result of evaluation. we found the proposed active network guaranteed reliable data transmission with almost 100% data reception rate for slowly moving mobile ad-hoc network and with more 95% data reception rate, which is improvement of 3.5737% reception rate compared with none active network, for continuously fast moving mobile ad-hoc network.

  • PDF

Performance Comparison of Differential Distributed Cooperative Networks with Modulation Scheme and Relay Location (변조방식 및 중계기 위치를 고려한 차등 분산 협력 네트워크의 성능비교)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.445-450
    • /
    • 2020
  • Cooperative networks provides the benefits of performance improvements and capacity increment when the source node transmits signal to the destination node using several relay nodes. In this paper, we consider the cooperative network where the transmission scheme between the source node and relay node use conventional binary signaling, whereas the transmission scheme between thee relay node and destination node adopt the differential space time coding signaling. We analyze the performance of the system depending on the modulation scheme, i.e., coherent and differential modulation, at the source-relay links. The performance depending on the relay location is also compared by considering modulation scheme and the number of relay node.

A Novel Jamming Detection Technique for Wireless Sensor Networks

  • Vijayakumar, K.P.;Ganeshkumar, P.;Anandaraj, M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4223-4249
    • /
    • 2015
  • A novel jamming detection technique to detect the presence of jamming in the downstream direction for cluster based wireless sensor networks is proposed in this paper. The proposed technique is deployed in base station and in cluster heads. The proposed technique is novel in two aspects: Firstly, whenever a cluster head receives a packet it verifies whether the source node is legitimate node or new node. Secondly if a source node is declared as new node in the first step, then this technique observes the behavior of the new node to find whether the new node is legitimate node or jammed node. In order to monitor the behavior of the existing node and new node, the second step uses two metrics namely packet delivery ratio (PDR) and received signal strength indicator (RSSI). The rationality of using PDR and RSSI is presented by performing statistical test. PDR and RSSI of every member in the cluster is measured and assessed by the cluster head. And finally the cluster head determines whether the members of the cluster are jammed or not. The CH can detect the presence of jamming in the cluster at member level. The base station can detect the presence of jamming in the wireless sensor network at CH level. The simulation result shows that the proposed technique performs extremely well and achieves jamming detection rate as high as 99.85%.

Power-Aware Dynamic Source Routing in Wireless Ad-hoc Networks (무선 애드혹 망에서의 전력 인식 동적 소스 라우팅)

  • 정혜영;신광욱;임근휘;이승학;윤현수
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.5
    • /
    • pp.519-531
    • /
    • 2004
  • Ad-hoc networks are temporary wireless systems composed of mobile nodes without any fixed infrastructure. The life time of each node in the ad-hoc network significantly affects the life time of whole ad-hoc network. A node which drained out its battery may incur the partition of whole network in some network topology The life time of each node depends on the battery capacity of each node. Therefore if all mobile nodes in the network live evenly long, the life time of the network will be longer. In this paper, we propose Power-Aware Dynamic Source Routing (PADSR) which selects the best path to make the life time of the network be longer. In PADSR, when a source node finds a path to the destination node, it selects the best path that makes nodes in the network live evenly long. To find the best path, PADSR considers the consumption of transmission energy and residual battery capacity of nodes upon the path. Consequently the network lives longer if we use PADSR.

Energy Efficient Cross Layer Multipath Routing for Image Delivery in Wireless Sensor Networks

  • Rao, Santhosha;Shama, Kumara;Rao, Pavan Kumar
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1347-1360
    • /
    • 2018
  • Owing to limited energy in wireless devices power saving is very critical to prolong the lifetime of the networks. In this regard, we designed a cross-layer optimization mechanism based on power control in which source node broadcasts a Route Request Packet (RREQ) containing information such as node id, image size, end to end bit error rate (BER) and residual battery energy to its neighbor nodes to initiate a multimedia session. Each intermediate node appends its remaining battery energy, link gain, node id and average noise power to the RREQ packet. Upon receiving the RREQ packets, the sink node finds node disjoint paths and calculates the optimal power vectors for each disjoint path using cross layer optimization algorithm. Sink based cross-layer maximal minimal residual energy (MMRE) algorithm finds the number of image packets that can be sent on each path and sends the Route Reply Packet (RREP) to the source on each disjoint path which contains the information such as optimal power vector, remaining battery energy vector and number of packets that can be sent on the path by the source. Simulation results indicate that considerable energy saving can be accomplished with the proposed cross layer power control algorithm.

A Study of Power Source for Wireless Sensor Node Using Supercapacitors (슈퍼커패시터를 이용한 무선센서노드의 전원에 관한 연구)

  • Kim, Hyung-Pyo;Kim, Jin-Gyu
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.379-384
    • /
    • 2012
  • This paper presents the power source of wireless sensor node (WSN) using supercapacitors and a solar cell. Supercapacitors have high lifetime cycling compared to that of batteries. Supercapacitors are connected in series to achieve higher voltage and a voltage balancing circuit is required to ensure that no individual cell goes overvoltage. We employ an active balancing circuit that draws minimal current by using transistors. A diode is connected in series with each supercapacitor. A new balancing circuit that equalize the cells-voltage reduces energy consumption of supercapacitors. Voltage of operating WSN is applied 2.2-3.3V by DC/DC converter and supercapacitor voltage 2.2-5.1V. Maximum operating time of wireless sensor node is about 16 hours in full charging.

Stable Dynamic Source Routing in Ad­-hoc network (SDSR : Ad­-hoc 망에서의 안정성을 제공하는 Dynamic Source Routing)

  • 김혜원;박용진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.229-231
    • /
    • 2003
  • 기존에 제시된 ad hoc 라우팅 프로토콜에는 안정성에 대한 부분이 고려되어 있지 않다. 본 논문에서는 기존의 DSR ad hoc 라우팅 프로토콜에 안정성을 접목한 SDSR 라우팅 프로토콜을 제시한다. SDSR은 DSR에 안정성 제공을 위해 abnormal node detector와 neighbor table이라는 것을 추가한다. abnormal node detector는 네트워크 내에 abnormal 노드를 탐지해 네트워크에서 고립시켜 네트워크에 안정성을 제공하고 neighbor table에 있는 priority를 값에 따라 이웃 노드에서 들어온 패킷을 처리함으로써 효율적인 처리 능력을 제공한다. 본 논문에서는 abnormal node detector와 neighbor table을 통해 어떤 방식으로 네트워크에 안정성을 제공하는지 살펴보도록 하겠다.

  • PDF

Study of Location-based Routing Techniques of BS and Sensor Node (BS와 센서 노드의 위치 기반 라우팅 기법에 관한 연구)

  • Kim, Yong-Tae;Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.289-295
    • /
    • 2012
  • Routing technique of wireless sensor network that is presented to improve effectiveness of consumption in energy at the previous study is existing in various ways, however for routing, its own location data and nodes' location data close to with 1-hop distance should be kept. And it uses multi-hop transmission method that transmits data to BS node via several nodes. This technique makes electronic consumption of sensor node and entire network's energy consumption so that it makes effective energy management problem. Therefore, this paper suggests location based 1-hop routing technique of BS node that satisfies distance $d{\pm}{\alpha}$ with source node using RSSI and radio wave range of sensor node.