• 제목/요약/키워드: Source Routing

검색결과 414건 처리시간 0.026초

로컬 QoS 라우팅을 위한 경로선택 알고리즘 (Path Selection Algorithms for Localized QoS Routing)

  • 서경용
    • 대한전자공학회논문지TC
    • /
    • 제40권12호
    • /
    • pp.38-45
    • /
    • 2003
  • 최근에 글로벌 QoS 라우팅방식의 약점을 개선하려는 노력으로 로컬 QoS 라우팅 방식이 제시되었다. 글로벌 라우팅과는 다르게 로컬 QoS 라우팅에서는 라우터간의 상태교환을 수행하지 않고 virtual capacity를 사용하여 라우터가 독자적으로 라우팅을 수행한다. 로컬 QoS 라우팅에서는 소스와 목적간의 경로가 효과적으로 선택되어야만 좋은 성능을 보장받을 수 있다. 본 논문에서는 효과적인 경로 선택을 위하여 몇몇의 휴리스틱을 제시하고 이를 활용한 경로 선택 알고리즘을 제안하였다. 제안된 알고리즘은 시뮬레이션과 함께 분석되었으며 경로선정방식에 따라 로컬 QoS 라우팅의 성능이 매우 큰 영향을 받는다는 것을 확인하였다.

ZigBee 무선계측/경보 시스템을 위한 클러스터 기반의 AODV (Cluster-based AODV for ZigBee Wireless Measurement and Alarm Systems)

  • 박재원;김홍록;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.920-926
    • /
    • 2007
  • Establishing a fixed path for the message delivery through a wireless network is impossible due to the mobility. Among the number of routing protocols that have been proposed for wireless ad-hoc networks, the AODV(Ad-hoc On-demand Distance Vector) algorithm is suitable in the case of highly dynamic topology changes, along with ZigBee Routing(ZBR), with the exception of route maintenance. Accordingly, this paper introduces a routing scheme focusing on the energy efficiency and route discovery time for wireless alarm systems using IEEE 802.15.4-based ZigBee. Essentially, the proposed routing algorithm utilizes a cluster structure and applies ZBR within a cluster and DSR (Dynamic Source Routing) between clusters. The proposed algorithm does not require a routing table for the cluster heads, as the inter-cluster routing is performed using DSR. The performance of the proposed algorithm is evaluated and compared with ZBR using an NS2 simulator. The results confirm that the proposed Cluster-based AODV (CAODV) algorithm is more efficient than ZBR in terms of the route discovery time and energy consumption.

Routing Protocols for VANETs: An Approach based on Genetic Algorithms

  • Wille, Emilio C. G.;Del Monego, Hermes I.;Coutinho, Bruno V.;Basilio, Giovanna G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.542-558
    • /
    • 2016
  • Vehicular Ad Hoc Networks (VANETs) are self-configuring networks where the nodes are vehicles equipped with wireless communication technologies. In such networks, limitation of signal coverage and fast topology changes impose difficulties to the proper functioning of the routing protocols. Traditional Mobile Ad Hoc Networks (MANET) routing protocols lose their performance, when communicating between vehicles, compromising information exchange. Obviously, most applications critically rely on routing protocols. Thus, in this work, we propose a methodology for investigating the performance of well-established protocols for MANETs in the VANET arena and, at the same time, we introduce a routing protocol, called Genetic Network Protocol (G-NET). It is based in part on Dynamic Source Routing Protocol (DSR) and on the use of Genetic Algorithms (GAs) for maintenance and route optimization. As G-NET update routes periodically, this work investigates its performance compared to DSR and Ad Hoc on demand Distance Vector (AODV). For more realistic simulation of vehicle movement in urban environments, an analysis was performed by using the VanetMobiSim mobility generator and the Network Simulator (NS-3). Experiments were conducted with different number of vehicles and the results show that, despite the increased routing overhead with respect to DSR, G-NET is better than AODV and provides comparable data delivery rate to the other protocols in the analyzed scenarios.

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권3호
    • /
    • pp.735-748
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

유비쿼터스 센서 네트워크에서의 전력 기반 라우팅기법 (Power based Routing Scheme for Ubiquitous Sensor Networks)

  • 원종호;박형근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.649-651
    • /
    • 2018
  • 유비쿼터스 센서네트워크는 외부 전원에 연결되지 않고 자체 밧데리로 동작하므로 에너지의 효율적 활용을 통해 네트워크 수명을 극대화하는 것이 요구된다. 기존의 홉수 기반의 라우팅 프로토콜에서는 대부분 노드들은 일정한 송신전력을 기반으로 하여 라우팅 프로토콜이 설계되었다. 본 논문에서는 노드의 잔여전력에 따라 송신전력을 제어하도록 함으로써 노드간의 전력소모의 균형을 이루도록 하여 네트워크의 수명을 연장시키는 라우팅 프로토콜을 제안하고 시뮬레이션을 통한 제안되 라우팅 프로토콜의 성능을 비교분석하였다.

  • PDF

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1178-1191
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

Performance analysis of torus optical interconnect with data center traffic

  • Sharma, Abhilasha;Gopalan, Sangeetha Rengachary
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.64-73
    • /
    • 2021
  • Two-dimensional torus network nodes are typically interconnected using XY routing algorithm for transmitting a packet from a source node to a destination node. In XY routing, if all the paths are used efficiently, the throughput and latency can be improved. In this paper, to utilize all the paths efficiently, we propose a novel binary optical routing algorithm (BORA) to improve the throughput and latency. The throughput is calculated according to the injection rate and number of packets received at the destination. The XY routing algorithm and proposed BORA are implemented using objective modular network testbed in C++ simulation software and the results are analyzed and compared. In this paper, the simulation results show that the network latency reduces to 50% while using the proposed algorithm; moreover, the throughput is also improved.

Modified PSO Based Reactive Routing for Improved Network Lifetime in WBAN

  • Sathya, G.;Evanjaline, D.J.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.139-144
    • /
    • 2022
  • Technological advancements taken the health care industry by a storm by embedding sensors in human body to measure their vitals. These smart solutions provide better and flexible health care to patients, and also easy monitoring for the medical practitioners. However, these innovative solutions provide their own set of challenges. The major challenge faced by embedding sensors in body is the issue of lack of infinite energy source. This work presents a meta-heuristic based routing model using modified PSO, and adopts an energy harvesting scheme to improve the network lifetime. The routing process is governed by modifying the fitness function of PSO to include charge, temperature and other vital factors required for node selection. A reactive routing model is adopted to ensure reliable packet delivery. Experiments have been performed and comparisons indicate that the proposed Energy Harvesting and Modified PSO (EHMP) model demonstrates low overhead, higher network lifetime and better network stability.

이동 Ad Hoc 네트워크에서 사전 활성화 라우팅 선택과 관리유지 알고리즘의 구축 (The establishment of Proactive Routing Selection and Maintenance Algorithms for Mobile Ad Hoc Networks)

  • 조영주;이여진;정일용
    • 정보처리학회논문지C
    • /
    • 제14C권1호
    • /
    • pp.73-80
    • /
    • 2007
  • 기존의 이동 Ad Hoc On-demand 라우팅 알고리즘은 단지 경로의 손실이 발생할 경우에만 경로 발견을 시작하며, 단절된 경로를 발견하고 새로운 경로 확립하는데 막대한 경비와 시간이 소요된다. 본 논문에서는 기존 라우팅 알고리즘에서 사전 활성화 경로 선택과 관리유지 방식을 추가하는 것을 제안한다. 본 연구의 핵심 아이디어는 수신되는 패킷의 신호파워 세기가 손실되기 전의 최적 임계치 신호파워 세기까지 근접하게 되면 경로는 손실될 경향이 높다고 간주하는 것과 수신되는 패킷의 신호파워 세기가 최적 임계치 이하로 떨어졌을 경우, 사전경고 패킷을 발생하는 것이다. 사전경고 패킷을 발생 후에, 송신 노드는 계속적으로 패킷이 전송하는 동안 사전에 경로 발견을 시작하기 때문에, 모든 경로의 단절에 대한 잠재적인 가능성을 피할 수 있다. 성능평가 연구를 위하여 네트워크 시뮬레이토(NS2)가 사용된다. 결과에 의하면 된 알고리즘은 기존의 DSR과 AODV 프로토콜보다 패킷 전달율과 평균 지연시간 그리고 오버헤드 측면에서 성능이 우수한 경향을 나타낸다.

Mobility-Aware Ad Hoc Routing Protocols for Networking Mobile Robot Teams

  • Das, Saumitra M.;Hu, Y. Charlie;Lee, C.S. George;Lu, Yung-Hsiang
    • Journal of Communications and Networks
    • /
    • 제9권3호
    • /
    • pp.296-311
    • /
    • 2007
  • Mobile multi-robot teams are useful in many critical applications such as search and rescue. Explicit communication among robots in such mobile multi-robot teams is useful for the coordination of such teams as well as exchanging data. Since many applications for mobile robots involve scenarios in which communication infrastructure may be damaged or unavailable, mobile robot teams frequently need to communicate with each other via ad hoc networking. In such scenarios, low-overhead and energy-efficient routing protocols for delivering messages among robots are a key requirement. Two important primitives for communication are essential for enabling a wide variety of mobile robot applications. First, unicast communication (between two robots) needs to be provided to enable coordination and data exchange. Second, in many applications, group communication is required for flexible control, organization, and management of the mobile robots. Multicast provides a bandwidth-efficient communication method between a source and a group of robots. In this paper, we first propose and evaluate two unicast routing protocols tailored for use in ad hoc networks formed by mobile multi-robot teams: Mobile robot distance vector (MRDV) and mobile robot source routing (MRSR). Both protocols exploit the unique mobility characteristics of mobile robot networks to perform efficient routing. Our simulation study show that both MRDV and MRSR incur lower overhead while operating in mobile robot networks when compared to traditional mobile ad hoc network routing protocols such as DSR and AODV. We then propose and evaluate an efficient multicast protocol mobile robot mesh multicast (MRMM) for deployment in mobile robot networks. MRMM exploits the fact that mobile robots know what velocity they are instructed to move at and for what distance in building a long lifetime sparse mesh for group communication that is more efficient. Our results show that MRMM provides an efficient group communication mechanism that can potentially be used in many mobile robot application scenarios.