• Title/Summary/Keyword: Source Panel Method

Search Result 154, Processing Time 0.02 seconds

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

  • Kim, Jae Woong;Jang, Beom Seon;Kim, Yong Tai;Chun, Kwang San
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.348-363
    • /
    • 2013
  • The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power $CO_2$ laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

An Experimental Analysis of the Contributions to the Radiated Noise due to Panel Vibration of a Rotational Machine (회전체 진동으로 인한 판넬 방사소음의 실험적 기여도 분석)

  • 국형석;허승진;고강호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.126-131
    • /
    • 2003
  • This study is concerned with the reduction of noise radiation by an industrial fan unit. First, spectral decomposition method is used to decompose the spectrogram obtained in experiments into source function and noise transfer function, and then major noise generation sources are investigated. Among the noise sources involved in the fan unit. this article is focused on the noise source due to vibration of panels of the unit housing. It is shown here that noise radiation associated with the panel vibration can be as significant in some frequency ranges as that associated with other noise sources such as aeroacoustic fan noise.

Development of Steady/Unsteady Aerodynamic Analysis Program Using 3-Dimensional Subsonic Unstructured Panel Method (3차원 아음속 비정렬 패널법을 이용한 정상/비정상 공력 해석 프로그램 개발)

  • Park, Jinyi;Baek, Chung;Lee, Seungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.367-376
    • /
    • 2022
  • In this study, a steady and unsteady aerodynamic analysis program using a 3-dimensional subsonic unstructured panel method is developed and verified. Surfaces of bodies are modeled with the source and doublet distributions on triangular or quadrilateral panels. Geometry modeling of complex geometries and multi-body, therefore, can be easily accomplished. The Kelvin theory and the unsteady Kutta condition allow the doublet strength of the wake panels determined for unsteady flows. Various steady and unsteady flows in two and three dimensions are computed and compared with the analytical and the published computational results.

Tool-Path Generation in NC Machining of Automobile Panel Die (자동차 판넬 금형의 NC 가공을 위한 공구 경로 생성)

  • Lee, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.74-84
    • /
    • 1994
  • This paper discusses a method to generate the tool path for NC machining of automobile panel dies. The source data representing a panel die may be generated from digitizing machines, other CAD/CAM systems via IGES files, of compound surface models. From the source data, three types of interferencefree tool paths are generated automatically ; a parallel (Cartesian), an isometric, and a pencil cutting tool path. For the interference-free tool path, a polyhedral model composed of several triangles, and an 'offset triangle' approach are exploited. Finally, some practical examples are illustrated.

  • PDF

Numerical Evaluation of 2nd Derivatives of the Potential in the Panel method for the Unsteady Potential Flow Problem (비정상 포텐셜 유동의 패널법 해석에서 포텐셜의 2차 미분값의 수치계산)

  • 양진호;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.41-45
    • /
    • 2000
  • In solving the unsteady potential flow problem of the ship in waves with the panel method, in general one can consider the basic flow as the free stream or double body solution. For the double body solution, the body boundary condition has the 2nd derivatives of the velocity potential. Low order panel methods are known to suffer from the significant error in the 2nd derivatives computed at the body surface. This paper analyzes the numerical error in the 2nd derivatives for a 2-D cylinder and a 3-D sphere problem, and an extrapolation method to obtain the correct derivatives on the body surface is suggested.

  • PDF

A Study on the Numerical Radiation Condition in the Steady Wave Problem (정상파 문제의 방사조건에 관한 연구)

  • Lee, Gwang-Ho;Jeon, Ho-Hwan;Seong, Chang-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.97-110
    • /
    • 1998
  • The numerical damping and dispersion error characteristics associated with difference schemes and a panel shift method used for the calculation of steady free surface flows by a panel method are an analysed in this paper. First, 12 finite difference operators used for the double model flow by Letcher are applied to a two dimensional cylinder with the Kelvin free surface condition and the numerical errors with these schemes are compared with those by the panel shift method. Then, 3-D waves due to a submerged source are calculated by the difference schemes, the panel shift method and also by a higher order boundary element method(HOBEM). Finally, the waves and wave resistance for Wigley's hull are calculated with these three schemes. It is shown that the panel shift method is free of numerical damping and dispersion error and performs better than the difference schemes. However, it can be concluded that the HOBEM also free of the numerical damping and dispersion error is the most stable, accurate and efficient.

  • PDF

Estimation of Aircraft Stability Derivatives Using a Subsonic-supersonic Panel Method (아음속 초음속 패널법을 이용한 항공기 안정성 미계수 예측)

  • Gong, Hyo-Joon;Lee, Hyung-Ro;Kim, Beom-Soo;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.385-394
    • /
    • 2012
  • A computer program that can estimate static, dynamic stability and control derivatives using a subsonic-supersonic panel method is developed. The panel method uses subsonic-supersonic source and elementary horse shoe vortex distributions, and their strengths are determined by solving the boundary condition approximated with a thin body assumption. In addition, quasi-steady analysis on the body fixed coordinate system allows the estimation of damping coefficients of aircraft 3 axes. The code is validated by comparing the neutral point, roll and pitch damping of delta wings with published analysis results. Finally, the static, dynamic stability and control derivatives of F-18 are compared with experimental data as well as other numerical results to show the accuracy and the usefulness of the code.

The Aerodynamic Analysis of Helicopter Rotors by Using an Unsteady Source-Doublet Panel Method (비정상 Source-Doublet 패널 기법을 이용한 헬리콥터 로터 공력 해석)

  • 이재원;오세종;이관중
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.1-9
    • /
    • 2006
  • 본 연구의 목적은 여러 가지 비행 모드 상의 로터 성능을 효율적으로 예측하는 것이다. 헬리콥터의 공력 특성을 예측하기 위한 비정상 source-doublet 패널 기법 기반의 수치 기법을 개발하였다. 후류의 형상 예측에는 시간 전진 자유후류모델이 사용되었다. 점성에 의한 확산을 고려한 후류의 roll-up 모사를 위하여 후류의 doublet 패널은 같은 강도의 와류고리로 대체하여 계산하였다. 후류와 양력면의 충돌 문제는 표면격자 내부에 들어간 와류고리의 포텐셜값을 제거하여 해결하였다. 제자리비행의 해석 시에 나타나는 와류 불안정성의 해결에는 slow starting과 vortex core growth 모델을 사용하였다. 로터 공력 해석 프로그램은 제자리비행과 전진비행에 대한 실험 결과와 비교하여 검증하였으며, 실험치와 일치하는 결과를 얻을 수 있었다.

Steady and Transient Solution of heat Conduction from hurried Pipes of panel heating Slab (상-파넬 히-팅의 해석법)

  • Lee Kun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.3 no.3
    • /
    • pp.185-190
    • /
    • 1974
  • Floor panel heating system is popular in Korea as dwelling house heating system. There are two methods for keeping floor surface warm. One method is delivering warm air under the floor such as Roman Hypocaust and Korean traditional Ondol. The other method is imbedding hot water pipes into the concrete floor slab. This paper gives basic equations for steady and transient solutions of heat conduction from hurried pipes. For steady-state solution, fin Efficiency Method and Sink and Source Method were introduced. Sink and Source Method is applied to transient state and basic solution is given in the form of Exponential Integral Function. Numerical solutions can be solved easily by digital computer from these equations.

  • PDF

Characteristics for the Lift of Wing by 3-D Panel Method (3차원 패널법에 의한 WING의 양력계산에 관한 연구)

  • 김진석;이승건;김진안
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.31-37
    • /
    • 1994
  • 3-Dimensional panel method is now developed to the level that one can calculate the lift of a three dimensional body with the same accuracy of wind tunnel test and some current codes can consider the boundary layer effects due to the viscosity and unsteady motion in the calculation of lift. This paper is also aimed to develop these kinds of computing programs, and as a beginning, the authors restricted the problems to the steady potential flow cases. The calculation of 3-Dimensional body, wing and tandem wing carried out, using source panel and vortex ring panel. Finally, the interactions between 3-Dimension symmetric body and a wing are also calculated.

  • PDF