• Title/Summary/Keyword: Source Node

Search Result 603, Processing Time 0.02 seconds

Comments on "Optimal Utilization of a Cognitive Shared Channel with a Rechargeable Primary Source Node"

  • El Shafie, Ahmed;Salem, Ahmed Sultan
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.265-266
    • /
    • 2015
  • In a recent paper [1], the authors investigated the maximum stable throughput region of a network composed of a rechargeable primary user and a secondary user plugged to a reliable power supply. The authors studied the cases of an infinite and a finite energy queue at the primary transmitter. However, the results of the finite case are incorrect. We show that under the proposed energy queue model (a decoupled M/D/1 queueing system with Bernoulli arrivals and the consumption of one energy packet per time slot), the energy queue capacity does not affect the stability region of the network.

Reactive Routing Keyword based Routing Procedure in MANET (MANET에서의 Reactive Routing Keyword 기반 라우팅 프로시듀어)

  • Park Soo-Hyun;Shin Soo-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.4
    • /
    • pp.55-69
    • /
    • 2004
  • In MANET(Mobile Ad-hoc Network), unlike in wired networks, a path configuration should be in advance of data transmission along a routing path. Frequent movement of mobile nodes, however, makes it difficult to maintain the configured path and requires re-configuration of the path very often. It may also leads to serious problems such as deterioration of QoS in mobile ad-hoc networks. In this paper, we proposed a Reactive Routing Keyword (RRK) routing procedure to solve those problems. Firstly, we noticed it is possible in RRK routing to assign multiple routing paths to the destination node. We applied this feature into active networks and SNMP information based routing by storing unique keywords in cache of mobile nodes corresponding to present and candidate routings in a path configuration procedure. It was shown that the deterioration of QoS which may observed in Dynamic Source Routing(DSR) protocol was greatly mitigated by using the proposed routing technique.

  • PDF

Multi-Objective Micro-Genetic Algorithm for Multicast Routing (멀티캐스트 라우팅을 위한 다목적 마이크로-유전자 알고리즘)

  • Jun, Sung-Hwa;Han, Chi-Geun
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.504-514
    • /
    • 2007
  • The multicast routing problem lies in the composition of a multicast routing tree including a source node and multiple destinations. There is a trade-off relationship between cost and delay, and the multicast routing problem of optimizing these two conditions at the same time is a difficult problem to solve and it belongs to a multi-objective optimization problem (MOOP). A multi-objective genetic algorithm (MOGA) is efficient to solve MOOP. A micro-genetic algorithm(${\mu}GA$) is a genetic algorithm with a very small population and a reinitialization process, and it is faster than a simple genetic algorithm (SGA). We propose a multi-objective micro-genetic algorithm (MO${\mu}GA$) that combines a MOGA and a ${\mu}GA$ to find optimal solutions (Pareto optimal solutions) of multicast routing problems. Computational results of a MO${\mu}GA$ show fast convergence and give better solutions for the same amount of computation than a MOGA.

Implementation and Experiment of Node Mobility Using Mininet and ONOS Controller (Mininet과 ONOS 컨트롤러를 이용한 단말 이동성 구현 및 실험)

  • Lim, Hyun-Kyo;Kim, Kyoung-Han;Heo, Joo-Seong;Han, Youn-Hee
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.209-210
    • /
    • 2016
  • 최근 SDN (Software-Defined Networks)에 대한 관심이 증가함에 따라 개인, 학교, 연구소에서 쉽고 간편하게 가상의 네트워크를 구성하고 SDN 기반 네트워크를 테스트를 수행할 수 있는 Mininet이 많이 활용되고 있다. 또한, 여러 SDN 컨트롤러 중에서 ONOS 컨트롤러는 OpenSource로 공개되어 GUI를 이용해 네트워크의 전반적인 토폴로지와 Flow 관리를 쉽게 할 수 있는 성숙된 컨트롤러로 인식되고 있다. 본 논문에서는 Mininet과 ONOS 컨트롤러를 이용하여 SDN 네트워크를 구성하고, 노드가 각 스위치를 이동하여 다닐 때에도 통신이 올바르게 유지되도록 컨트롤하는 시나리오를 구현하고 그 실험 결과를 제시하였다.

Cooperative Decode-and-Forward Relaying for Secure Multicasting

  • Lee, Jong-Ho;Sohn, Illsoo;Song, Sungju;Kim, Yong-Hwa
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.934-940
    • /
    • 2016
  • In this paper, secure multicasting with the help of cooperative decode-and-forward relays is considered for the case in which a source securely sends a common message to multiple destinations in the presence of a single eavesdropper. We show that the secrecy rate maximization problem in the secure multicasting scenario under an overall power constraint can be solved using semidefinite programing with semidefinite relaxation and a bisection technique. Further, a suboptimal approach using zero-forcing beamforming and linear programming based power allocation is also proposed. Numerical results illustrate the secrecy rates achieved by the proposed schemes under secure multicasting scenarios.

Inventory Policies for Multi-echelon Serial Supply Chains with Normally Distributed Demands (정규분포를 따르는 다단계 시리얼 공급사슬에서의 재고 정책)

  • Kwon, Ick-Hyun;Kim, Sung-Shick
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.3
    • /
    • pp.115-123
    • /
    • 2006
  • The main focus of this study is to investigate the performance of a clark-scarf type multi-echelon serial supply chain operating with a base-stock policy and to optimize the inventory levels in the supply chains so as to minimize the systemwide total inventory cost, comprising holding and backorder costs as all the nodes in the supply chain. The source of supply of raw materials to the most upstream node, namely supplier, is assumed to have an infinite raw material availability. Retailer faces random customer demand, which is assumed to be stationary and normally distributed. If the demand exceeds on-hand inventory, the excess demand is backlogged. Using the echelon stock and demand quantile concepts and an efficient simulation technique, we derive near optimal inventory policy. Additionally we discuss the derived results through the extensive experiments for different supply chain settings.

On the Performance Evaluation of Energy-Aware Sleep Scheduling (EASS) in Energy Harvesting WSN (EH-WSN)

  • Encarnacion, Nico N.;Yang, Hyun-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.264-268
    • /
    • 2012
  • Tree-based structures offer assured optimal paths from the data source to the sink. Shortest routes are disregarded since these do not consider the remaining energy level of the nodes. This shortens the lifetime of the whole network. Most tree-based routing protocols, although aware of the nodes' energy, do not consider an energy aware sleep scheduling scheme. We propose an energy-aware sleep scheduling (EASS) scheme that will improve the sleep scheduling scheme of an existing tree-based routing protocol. An energy harvesting structure will be implemented on the wireless sensor network. The depth of sleep of every node will be based on the harvested energy.

3D Transient Analysis of Linear Induction Motor Using the New Equivalent Magnetic Circuit Network Method

  • Jin Hur;Kang, Gyu-Hong;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.122-127
    • /
    • 2003
  • This paper presents a new time-stepping 3-D analysis method coupled with an external circuit with motion equation for dynamic transient analysis of induction machines. In this method, the magneto-motive force (MMF) generated by induced current is modeled as a passive source in the magnetic equivalent network. So, by using only scalar potential at each node, the method is able to analyze induction machines with faster computation time and less memory requirement than conventional numerical methods. Also, this method is capable of modeling the movement of the mover without the need for re-meshing and analyzing the time harmonics for dynamic characteristics. From comparisons between the results of the analysis and the experiments, it is verified that the proposed method is capable of estimating the torque, harmonic field, etc. as a function of time with superior accuracy.

Efficient distributed estimation based on non-regular quantized data

  • Kim, Yoon Hak
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.710-715
    • /
    • 2019
  • We consider parameter estimation in distributed systems in which measurements at local nodes are quantized in a non-regular manner, where multiple codewords are mapped into a single local measurement. For the system with non-regular quantization, to ensure a perfect independent encoding at local nodes, a local measurement can be encoded into a set of a great number of codewords which are transmitted to a fusion node where estimation is conducted with enormous computational cost due to the large cardinality of the sets. In this paper, we propose an efficient estimation technique that can handle the non-regular quantized data by efficiently finding the feasible combination of codewords without searching all of the possible combinations. We conduct experiments to show that the proposed estimation performs well with respect to previous novel techniques with a reasonable complexity.

Modified PSO Based Reactive Routing for Improved Network Lifetime in WBAN

  • Sathya, G.;Evanjaline, D.J.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.139-144
    • /
    • 2022
  • Technological advancements taken the health care industry by a storm by embedding sensors in human body to measure their vitals. These smart solutions provide better and flexible health care to patients, and also easy monitoring for the medical practitioners. However, these innovative solutions provide their own set of challenges. The major challenge faced by embedding sensors in body is the issue of lack of infinite energy source. This work presents a meta-heuristic based routing model using modified PSO, and adopts an energy harvesting scheme to improve the network lifetime. The routing process is governed by modifying the fitness function of PSO to include charge, temperature and other vital factors required for node selection. A reactive routing model is adopted to ensure reliable packet delivery. Experiments have been performed and comparisons indicate that the proposed Energy Harvesting and Modified PSO (EHMP) model demonstrates low overhead, higher network lifetime and better network stability.