• Title/Summary/Keyword: Sound synthesis of Haegeum

Search Result 4, Processing Time 0.02 seconds

Spectral Modeling Synthesis of Haegeum using GPU (GPU를 이용한 해금의 스펙트럼 모델링)

  • Islam, Md Shohidul;Islam, Md Rashedul;Farid, Fahmid Al;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.5-8
    • /
    • 2014
  • This paper presents a parallel approach of formant synthesis method for haegeum on graphics processing units (GPU) using spectral modeling. Spectral modeling synthesis (SMS) is a technique that models time-varying spectra as a combination of sinusoids and a time-varying filtered noise component. A second-order digital resonator by the impulse-invariant transform (IIT) is applied to generate deterministic components and the results are band-pass filtered to adjust magnitude. The noise is calculated by first generating the sinusoids with formant synthesis, subtracting them from the original sound, and then removing some harmonics remained. The synthesized sounds are consequently by adding sinusoids, which are shown to be similar to the original Haegeum sounds. Furthermore, GPU accelerates the synthesis process enabling- real time music synthesis system development, supporting more sound effect, and multiple musical sound compositions.

  • PDF

Formant Synthesis of Haegeum Sounds Using Cepstral Envelope (캡스트럼 포락선을 이용한 해금 소리의 포만트 합성)

  • Hong, Yeon-Woo;Cho, Sang-Jin;Kim, Jong-Myon;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.526-533
    • /
    • 2009
  • This paper proposes a formant synthesis method of Haegeum sounds using cepstral envelope for spectral modeling. Spectral modeling synthesis (SMS) is a technique that models time-varying spectra as a combination of sinusoids (the "deterministic" part), and a time-varying filtered noise component (the "stochastic" part). SMS is appropriate for synthesizing sounds of string and wind instruments whose harmonics are evenly distributed over whole frequency band. Formants extracted from cepstral envelope are parameterized for synthesis of sinusoids. A resonator by Impulse Invariant Transform (IIT) is applied to synthesize sinusoids and the results are bandpass filtered to adjust magnitude. The noise is calculated by first generating the sinusoids with formant synthesis, subtracting them from the original sound, and then removing some harmonics remained. Linear interpolation is used to model noise. The synthesized sounds are made by summing sinusoids, which are shown to be similar to the original Haegeum sounds.

A Study of Analysis about Virtual Musical Instruments' Timbre - Focused on Violin, Erhu, Haegeum - (가상악기의 음색 분석 연구 - 바이올린, 얼후, 해금을 중심으로 -)

  • Sung, Ki-Young;Lee, You-Jung
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.7
    • /
    • pp.219-227
    • /
    • 2019
  • In this paper, we proactively looked at the structure and characteristics of each instrument in order to compare and analyze the sound colors of the western violin, chinese erhu and korean haegeum, which are representative bow string instruments. Also, many performers have simply been unable to fully explain how the violin is rich in pitch and the haegeum has a unique tone. Also, many performers thinks that violin sounds rich just because it has many overtones and have been unable to fully explain how haegeum makes unique tone. While previous research data show that most instruments are studied and published by analyzing their own frequencies or related cases of acoustic studies, this study provides a visual look how the harmonics composition, which determines musical instruments' timbres, consists of and suggests data specifically by analyzing each sound pressure of integer multiple overtones so that the structure of instruments' unique timbre can be understood. Based on this, we hope that it will be of considerable help to the development of virtual musical instruments of korean traditional instruments, which are relatively small compared to western virtual instruments, by reproducing instrument sounds through the synthesizers in the future.

Spectral Modeling of Haegeum Using Cepstral Analysis (캡스트럼 분석을 이용한 해금의 스펙트럼 모델링)

  • Hong, Yeon-Woo;Kang, Myeong-Su;Cho, Sang-Jin;Kim, Jong-Myon;Lee, Jung-Chul;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.243-250
    • /
    • 2010
  • This paper proposes a spectral modeling of Korean traditional instrument, Haegeum, using cepstral analysis to naturally describe Haegeum sounds varying with time. To get a precise result of cepstral analysis, we set the frame size to 3 periods of input signal and more cepstral coefficients are used to extract formants. The performance is enhanced by flexibly controlling the cutoff frequency of bandpass filter depending on the resonances in the synthesis process of sinusoidal components and the deleting peaks remained in the residual signal. To detect the change of pitch, we divide the input frames into silence, attack, and sustain region and determine which region the current frame is involved in. Then, the proposed method readjusts the frame size according to the fundamental frequency in the case of the current frame is in attack region and corrects the extraction errors of the fundamental frequency for the frames in sustain region. With these processes, the synthesized sounds are much more similar to the originals. The evaluation result through the listening test by a Haegeum player says that the synthesized sounds are almost similar to originals (96~100 % similar to the original sounds).