• Title/Summary/Keyword: Sound propagation model

Search Result 107, Processing Time 0.027 seconds

A study on patterns of propagation for high speed train(KTX) (한국형 고속전철(KTX) 방사패턴에 관한 연구)

  • 구동회;김재철;박태원;문경호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.836-842
    • /
    • 2001
  • The more sophisticated patterns of propagation model is presented in this paper, which includes three different source characteristics. The spherical, cosine and dipole radiation characteristics compared and sound event level and the maximum sound level are calculated by experiment and calculation. It is shown that patterns of propagation has dipole characteristics for low speed range(below about 150km/h) at electric multiple system. We know that push-pull high speed system(maximum speed: 300km/h) has cosine characteristics of noise propagation. For this purpose, We conduct the experiment of noise and know the empirical formula of noise level and radiation coefficient K. This model of simulation is conducted through point source array model at wheel/rail contact point by using program and experimental formula. We can guess prediction of profile, flat and wear of wheel by above modeling in near field.

  • PDF

Estimation of a transition point of sound propagation condition using transmission loss data measured in SAVEX15 (SAVEX15 실험 해역에서 측정된 전달손실 자료를 이용한 음파 전달 조건의 변환점 추정)

  • Kwon, Hyuckjong;Choi, Jee Woong;Kim, Byoung-Nam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Sound propagation in shallow water changes from spherical spreading to cylindrical spreading, depending on boundary conditions, and this point is defined as a transition point of the sound propagation condition. Theoretically, the transition point can be estimated using the transmission loss as a function of source-receiver range. In this paper, the transmission loss curve in a Pekeris waveguide is predicted using a parabolic-equation based acoustic propagation model and using this transmission loss curve, the range from the source of the transition point is estimated, which is compared to the critical distance calculated using the sound speed ratio of water to sediment. In addition, the effects of the sound speed profile and source depth change on the transition point are investigated. Finally, the transition point is estimated using the transmission loss data measured during the period of the SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015) conducted 65 km southwest of Jeju Island in May 2015, and it is compared to the ocean environmental parameters to understand the properties of sound propagation in the experimental area.

Finite Element Analysis for Sound Propagation Characteristics in a Duct Lined with Poroelastic Foams (유한요소해석을 통한 탄성폼이 대어진 덕트내의 소음전파 특성 해석)

  • Lee, Seung-Yup;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.876-876
    • /
    • 2001
  • Axisymmetric finite element model is developed to determine sound propagation characteristics in a circular duct lined with a poroelastic foam. The foam and air models are derived based on the Biot's theory and the Helmholtz equation respectively and finally result in a quadratic eigenvalue problem in the wave number. Some cross sectional mode shapes are shown and sound attenuations and phase speeds of some acoustic modes are given. Those of fundamental modes are compared with those by forced response solutions and those from measurement results. The influence of lining thickness is also described on sound propagation characteristics.

  • PDF

Infrasound Wave Propagation Characteristics in Korea (국내 인프라사운드 전파특성 연구)

  • 제일영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.63-69
    • /
    • 2000
  • Korea Institute of Geology Mining and Materials(KIGAM) cooperating with Southern Methodist University(SMU) has been operating seismo-acoustic array in Chul-Won area to discriminate man-made explosions from natural earthquakes since at the end of July 1999. In order to characterize propagation parameters of detected seismo-acoustic signal and to associate these signals as a blast event accompanying seismic and acoustic signals simultaneously it is necessary to understand infrasound wave propagation in the atmosphere. Two comparable Effective Sound Velocity Structures(ESVS) in atmosphere were constructed by using empirical model (MSISE90 and HWM93) and by aerological observation data of Korea Meteorological Administration (KMA) at O-San area. Infrasound propagation path computed by empirical model resulted in rare arival of refracted waves on ground less than 200km from source region. On the other hand Propagation paths by KMA more realistic data had various arrivals at near source region and well agreement with analyzed seismo-acoustic signals from Chul-Won data. And infrasound propagation in specific direction was very influenced by horizontal wind component in that direction. Linear travel time curve drawn up by 9 days data of the KMA in autumn season showed 335.6m/s apparent sound velocity in near source region. The propagation characteristics will be used to associate seismo-acoustic signals and to calculate propagation parameters of infrasound wave front.

  • PDF

SOUND AND VIBRATION STUDY OF ROTARY COMPRESSOR (로터리 콤프레셔의 소음 진동 연구)

  • 박종찬;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.973-978
    • /
    • 2001
  • Noise reduction has become a major issue of the manufacturing industry. This paper describes the reduction of noise and vibration of rotary compressors. Empirical design for the present strap of the accumulator has been considered to be sufficient for the constraint of the accumulator resonance modes without thorough study. Recently, however, some researchers found out that the accumulator contributes considerably to the sound propagation. In this paper, the contribution of accumulator to the noise propagation is investigated through sound measuring experiments by checking the directivity of the noise. And, experimental modal analysis results show that frequencies of some resonance modes of the accumulator coincide with the highest peaks on sound spectrum. To demonstrate the reason for those resonance modes, a finite element analysis is conducted. Normal mode analysis of the finite element model of the rotary compressor shows the mechanism of the accumulator resonance modes.

  • PDF

Prediction of Highway Traffic Noise-calculation of Sound Attenuation during Propagation (고속도로 교통소음 예측-전달감쇠 산정)

  • 조대승;김진형;최태묵;오정한;김성훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.236-242
    • /
    • 2002
  • This paper presents some advanced and supplemental methods to enhance the accuracy In case of calculating geometric divergence attenuation, attenuation by multiple screening structures, ground attenuation at unflat surfaces of sound during propagation outdoors by the methods specified in ISO 9613-2. Moreover, a calculation method for considering short-term wind effect, specified in ASJ Model-1998, is also introduced. To verity the accuracy of adopted methods, we have carried out highway traffic noise prediction and measurement at tile twelve locations appearing representative road shapes and structures, such as flat, retained cut, elevated, barrier-constructed roads. From the results, we have confirmed the predicted results show good correspondence with the measured at direct, diffracted and reflected sound fields within 30 m from the center of near side lane.

A Study on Estimation of the Sound Speed of Seabed from the Frequency-dependent Interference Pattern of Broadband Signal (광대역 신호의 주파수 영역 간섭 패턴을 이용한 해저면 음속 추정 연구)

  • 이성욱;한주영;김남수;나정열;박정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.554-561
    • /
    • 2003
  • Results of the numerical simulation and experimental data analysis for identification of mode cutoff frequency and estimation of sound speed of seabed from the spectrum of acoustic signal received at fixed source-receiver range are presented. Model simulations for Pekeris waveguide show that the frequency-dependent propagation loss and interference pattern are closely related to mode cutoff frequencies and it could be possible to the identify them from the changes of interference pattern. The concept considered at numerical simulations is applied to signals acquired at sea test. Cutoff frequency and sound speed of seabed are estimated from the interference pattern of measured signal. Propagation loss predicted using the estimated sound speed of seabed as model input parameter shows similar estimation result compared to propagation loss derived from measured data.

Direct Simulation of Acoustic Sound by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 유체음의 직접계산)

  • Kang, Ho-Keun;Ro, Ki-Deok;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1827-1832
    • /
    • 2003
  • In this research, the simulation method for acoustic sounds by a uniform flow around a two-dimensional circular cylinder by using the finite difference lattice Boltzmann model is explained. To begin with, we examine the boundary condition which determined with the distribution function $f_i^{(0)}$ concerning with density, velocity and internal energy at boundary node. Very small acoustic pressure fluctuation, with same frequency as that of Karman vortex street, is compared with the pressure fluctuation around a circular cylinder. The acoustic sound' propagation velocity shows that acoustic approa ching the upstream, due to the Doppler effect in the uniform flow, slowly propagated. For the do wnstream, on the other hand, it quickly propagates. It is also apparently the size of sound pressure was proportional to the central distance $r^{-1/2}$ of the circular cylinder. The lattice BGK model for compressible fluids is shown to be one of powerful tool for simulation of gas flows.

  • PDF

Noise Reduction of Reciprocal Compressor by Design Modification of Hermitic Shell (냉장고의 소음 저감을 위한 컴프레서 쉘 최적설계)

  • 박종찬;왕세명;박승일;이성태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.785-789
    • /
    • 2002
  • Sound measurement experiments and Finite Element analysis are carried out to understand the characteristics of the noise propagation and structure of the compressor in this research. Noises generated from the compressor on various conditions are measured to classify the transmission path of the noise propagation with respect to the sources. The experiment results show that noises attributed to the shell bending resonant modes accounts fer a major portion of the spectra and that damping spring of the discharge pipe have a damping effect on some frequency range. Constructions of the FE model show that the curvature of the upper shell is very important for the resonance of the upper shell. And, present upper shell has a difficult shape to be manufactured. And, in this research, shape optimization is conducted to increase the strength of the shell for the reduction of the noise. Sound spectrum of noise from the modified compressor verified the sound reduction.

  • PDF

Effects of shear deformation of sandwich panels on wave propagation and sound radiation characteristics (샌드위치 패널의 전단변형이 파동전달 및 방음 특성에 미치는 영향)

  • Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.110-113
    • /
    • 2005
  • Theoretical models to study the vibro-acoustic performance of a sandwich panel are proposed. The wave propagation characteristics are analyzed, and dispersion relation is derived. The vibration Is analyzed using the Mindlin plate theory. The vibration of the compliantly supported Mindlin plate is investigated using the Rayleigh-Ritz method. The Timoshenko beam functions are used as trial functions. The model is applied to numerically investigate the influence of the plate mechanical properties. The vibro-acoustic properties are mostly determined by bending deformation at low frequencies. At higher frequencies, the shear deformation has a strong influence. The proposed numerical model is used to estimate the optimal panel properties that result in minimum sound radiation. With increasing dynamic stiffnesses the vibration response decreases but the radiating wavenumber components increase.

  • PDF