• Title/Summary/Keyword: Sound pressure Level

Search Result 690, Processing Time 0.031 seconds

Performance Analysis of the the Single Alarm Detector in the Rooms of Single Houses by Computer Simulation (시뮬레이션을 통한 주거공간 단독경보형감지기의 성능 분석)

  • Lim, Geun-Joo;Park, Sang-Cheon;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.29-35
    • /
    • 2020
  • This study was conducted to examine the performance in the space for a single alarm type detector installed in a single house. Three types of houses were used, including two types of one-story and two-story houses. A computer simulation program was used to predict the sound pressure level in response to the occurrence of an alarm sound in a residential space. The characteristics of the sound source applied to the simulation were directly measured and used as input data. As a result of simulation, it was found that the sound pressure level in the kitchen and living room generally met the standard when the alarm sound of the detector occurred. However, the sound pressure level in the bedroom was predicted to be at least 20 dB (A) lower than the American Fire Protection Association standard of 75 dB (A). Therefore, a plan should be prepared to maintain a sufficient sound level in the bedroom space inside the house, and efforts will be needed to ensure safe evacuation in case of fire by establishing relevant standards.

Designing Flexible Thin Film Audio Systems Utilizing Polyvinylidene Fluoride

  • Um, Keehong;Lee, Dong-Soo;Pinthong, Chairat
    • International journal of advanced smart convergence
    • /
    • v.2 no.2
    • /
    • pp.16-18
    • /
    • 2013
  • In this paper, we develop a method to design a flexible thin film audio systems utilizing Polyvinylidene fluoride. The system we designed showed the properties of increased transparency and sound pressure levels. As an input terminal transparent oxide thin film is adopted. In order to provide dielectric insulation, a transparent insulating oxide thin film is coated to obtain double -layered structure. In the range of visible light, the output from the output of the system showed an increased and improved sound pressure level. The piezoelectric polymer film of polyvinylidene fluoride (PVDF) is used to produce mechanical vibration due to the applied electrical voltage signal. An analog electric voltage signal is transformed into sound waves in the audio system.

Designing Piezoelectric Audio Systems Using Polymer Polyvinylidene Fluoride

  • Um, Keehong;Lee, Dong-Soo;Pinthong, Chairat
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.6 no.1
    • /
    • pp.13-15
    • /
    • 2014
  • We develop a method to fabricate a flexible thin film audio systems using polyvinylidene fluoride(PVDF). The system we designed showed the properties of increased flexibility, transparency, and sound pressure levels. As an input port of two terminals, transparent oxide thin film with a low resistivity is adopted. In order to provide dielectric insulation, a transparent insulating oxide thin film is coated to obtain double-layered structure. In the range of visible light, the output from the output of the system showed a increased and improved sound pressure level. The piezoelectric polymer film of PVDF is used to produce mechanical vibration due to the applied electrical voltage signal. An analog electric voltage signal is transformed into sound waves in the audio system.

Regression Analysis of an Excavator Sound Power Level (굴착기의 음향파워레벨 회귀분석)

  • Gu, Jin-Hoi;Lee, Jae-Won;Seo, Chung-Youl;Jang, Seong-Ki;Choi, Kyung-Hee;Han, Jin-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.203-207
    • /
    • 2012
  • The noise emitted from an excavator has long been a cause of environmental disputes, while causing displeasure to the nearby residents. So, the ministry of environment adopted the construction machinery noise labeling system to encourage the construction machinery manufacturing companies to develop the low noise construction machinery voluntarily. But, as the quality of life improves, a growing number of people desire the comfortable and quite environment to live in. Under the situation, noise from the construction machinery has been a major cause for stress and complaints. When the noise dispute happened in the construction site, the sound pressure level of the construction machinery like a excavator was measured at the lot boundary of the noise victim's residence to judge how much noise damage occur. But the sound pressure level of the construction machinery is measured differently according to the acoustic environment of construction site and the measuring position, respectively, which makes it difficulty to judge whether the noise damage occur or not. As the sound power level of noise source is not affected by the acoustic environment of construction site and the measuring position, if we use the information of the sound power level, it will be easy to judge whether the noise damage occur and to establish the soundproofing measures. Therefore, we derive the sound power level regression model of the excavator to judge whether the noise emitted from the excavator damages to residents near the construction site. Also, the sound power level regression model of the excavator drawn in this paper will help construction companies to plan the noise reduction program in the construction sites.

The Sound Quality Evaluation of High-speed Coastal Passenger Ships (고속 연안 여객선의 음질 평가)

  • 김윤석;김사수
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.345-352
    • /
    • 2000
  • Recently, it becomes to be very important to reduce the cabin noise of passenger ship, according to the trend of speedy and luxury ship. The noise reduction and control techniques should be considered as important factors from the viewpoint of the sound problem of cabin. Therefore, ship designer has to improve the sound quality as well as to redece the sound pressure level in cabins. In this paper, for the new approach of these problems, we tried to find the trends of noise and sound quality of high-speed coastal passenger ships. Loudness, roughness, fluctuation strength, and sharpness are selected as the parameters for the evaluation of sound quality. The parameters are calculated by using the sound measured in cabin while the ship is running. Furthermore we tried to find the trend of each parameter in cabins and compare with that of sound pressure level. As results, we find that the loudness is linearly proportional to sound pressure level. But, the other parameters show different trends which may be caused by ship motion on the wave and fluctuation of propelling power.

  • PDF

Acoustic Properties of Three-room Coupled System by Connected Two Apertures (개구부로 연결된 3중 커플룸의 음향특성)

  • Na, Hae Joong;Lim, Byoung-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.340-349
    • /
    • 2016
  • A coupled room system consists of adjacent rooms and apertures where the sound energy is exchanged between the two rooms. Acoustically, a coupled room system shows a non-exponential decay profile. Most of the related researches have been to analyze the acoustic properties of two-room coupled system so far whereas three-room coupled system were seldom studied. In this regard, this paper aims to analyse the distribution of sound pressure level, sound decay curve of three-room coupled system and sound energy flow between them by using the acoustic diffusion model and to further verify them through experiments. Firstly, the sound pressure level distribution and mean sound pressure level in the steady-state condition are analyzed at various frequencies and source locations. Good agreements are observed in both experiments and analysis results. Secondly, two double slope effect quantifiers of sound attenuation, LDT/EDT and LDT/T10 are compared at various frequencies and for different source locations. The result indicates that LDT/T10, less affected by the early reflection patterns than LDT/EDT, is more suitable to the analysis and experiments of a multi-slope sound decay curve. Lastly, the sound energy flow in each room is analyzed based on the acoustic diffusion model. After the early decay stage, the sound energy is observed to flow from the room with a long reverberation time to the room with a short one.

Analysis of the Reverberation Time in the Normalized Impact Sound Pressure Level (경량충격음 평가시 잔향시간 영향에 대한 고려)

  • Park, C.Y.;Hong, G.P.;Kim, S.H.;Jang, D.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.952-955
    • /
    • 2007
  • 경량충격음레벨을 평가하기 위해서는 수음실의 잔향시간을 측정하여 규준화 바닥충격음레벨을 구하여야 한다. 본 논문에서는 규준화 바닥충격음레벨과 표준화 바닥충격음레벨을 구할 때 고려하는 보정레벨을 중심으로 등가 흡음력을 결정하는 잔향시간과 수음실의 체적을 변수요인으로 분석하였다. 그 결과 측정된 잔향 시간은 공간에 관계없이 기준보다 2배 이상 길게 나타났고, 등가 흡음력은 기준보다 침실의 경우 1/2 정도 작지만 거실의 경우 기준과 거의 유사하게 나타나 침실의 경우 두 보정레벨이 유사하지만 거실의 경우 전자가 후자보다 낮게 보정되는 것으로 나타났다.

  • PDF

Subjective Evaluation of Stage Acoustics with the Alteration of the Sound Pressure Level of Reverberation (잔향음의 음압레벨 변화에 따른 연주자의 무대음향 주관평가)

  • Kim, Youngsun;Jeong, Jeongho;Jeon, Jinyong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.129-138
    • /
    • 2017
  • The subjective experiments on professional musicians using the four channel real-time convolution system were conducted to investigate the effect of reverberant sound pressure level ($L_{rev}$) for stage acoustics. The strength of $L_{rev}$ was changed to 2 dB steps to investigate the optimal strength for ease of performance and the subjective questionnaire survey was conducted to investigate the effect of subjective factor by $L_{rev}$. From the experimental results, a specific strength of $L_{rev}$ is related to ease of music performance. Loudness and directivity are highly correlated.

Sound Power Evaluation of Various Domestic Railroad Vehicles (국내 철도 차량의 음향발생 특성에 대한 비교 연구)

  • Kim, Jeung-Tae;Cho, Sung-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.1
    • /
    • pp.28-37
    • /
    • 1999
  • Many residential areas are situated near to railroad tracks so that a railroad noise has been one of the major environmental issues. In this paper two important aspects have been investigated in order to properly evaluate the railroad vehicle noise : sound power levels for different types and sound propagation characteristics of the railroad vehicles. For noise source characteristics of railroad vehicles, sound power values for various types of trains that are in active service have been measured. In this paper, domestic railroad vehicles are measured and compared with high speed train(TGV). Based on sound power information of railway vehicles, prediction on the sound pressure level and equivalent noise level near to railway areas have been evaluated.

  • PDF

Study on Low Frequency Swishing Sound Field by a Singularity in Circular Motion with Large Radius (큰 반경의 원운동을 하는 점 음원에 의한 저주파수 스위싱 음장 분석)

  • Lee, Gwang-Se;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.569-574
    • /
    • 2014
  • In order to investigate low frequency swishing noise of wind turbines, acoustic source model using a singularity in circular motion is introduced to derive analytic solution of Lowson acoustic analogy in time domain. Results in time and frequency domains computed by the solution show apparent modulation of amplitude and frequency. The solution indicates that time histories of acoustic pressure at receiver points varied significantly according to receiver's directional location, even when the retarded time distributions are similar. However, the corresponding time-averaged spectra of sound pressure at the receiver locations where the retarded time distributions are almost same are not significantly different. It can be inferred from these results that the time-averaged sound pressure spectra which cannot take into account the detailed difference in the time-variation of wind turbine noise may not represent the sound quality of wind turbines due to its swishing. Finally, as an introduction of procedure to quantify low frequency swishing noise level, relative variation of overall sound pressure level is obtained using tonal low frequency noise model.