• Title/Summary/Keyword: Sound location

Search Result 329, Processing Time 0.028 seconds

Development and Embodiment of Automatic Location Tracing Service for Rescue Requester

  • Kim, Sun-Hyo;Kim, Jung-Hun;Kim, Hee-Sun;Yoon, Sung-wook
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.11-16
    • /
    • 2021
  • This study developed a design to estimate the location of rescue demander using the sound system at disaster site, in the conditions of indoor positioning cannot be performed properly. It is a location tracing system through smart phone application. It generates sound wave information of rescuer at the rescue site, and it can be used as assistant means for indoor location tracing at the disaster site using sound wave receiving measurement technology.

Direction and Location Estimating Algorithm for Sound Sources with Two Hydrophones in Underwater Environment (두 개의 하이드로폰을 이용한 수중 음원 방향 추정 및 위치 추정 알고리즘)

  • Shin, JaeWook;Song, Ju-Man;Lee, SeokYoung;Choi, Hyun-Taek;Park, PooGyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.676-681
    • /
    • 2013
  • For underwater vehicles, the use of sensors such as cameras and laser scanners is limited by the difference in environment compared to robots designed to work on dry land. In underwater environments, if use is made of sound signals, valuable information can be obtained. The most important application is the localization of underwater sound sources. The estimated location of a sound source can be used to control underwater robots or submarines. Thus, the purpose of this research is to estimate the source's direction and location in a noisy underwater environment. The direction of the sound source is obtained using two hydrophones. Furthermore, if we assume that the robot or sound source is moving, the location of the sound source is estimated using more than two estimated directions. The feasibility of the developed algorithm is examined by experiments in a water tank and in the ocean.

A DSP Implementation of Subband Sound Localization System

  • Park, Kyusik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4E
    • /
    • pp.52-60
    • /
    • 2001
  • This paper describes real time implementation of subband sound localization system on a floating-point DSP TI TMS320C31. The system determines two dimensional location of an active speaker in a closed room environment with real noise presents. The system consists of an two microphone array connected to TI DSP hosted by PC. The implemented sound localization algorithm is Subband CPSP which is an improved version of traditional CPSP (Cross-Power Spectrum Phase) method. The algorithm first split the input speech signal into arbitrary number of subband using subband filter banks and calculate the CPSP in each subband. It then averages out the CPSP results on each subband and compute a source location estimate. The proposed algorithm has an advantage over CPSP such that it minimize the overall estimation error in source location by limiting the specific band dominant noise to that subband. As a result, it makes possible to set up a robust real time sound localization system. For real time simulation, the input speech is captured using two microphone and digitized by the DSP at sampling rate 8192 hz, 16 bit/sample. The source location is then estimated at once per second to satisfy real-time computational constraints. The performance of the proposed system is confirmed by several real time simulation of the speech at a distance of 1m, 2m, 3m with various speech source locations and it shows over 5% accuracy improvement for the source location estimation.

  • PDF

An Experimental Study to Improve Measurement Reliability for the Airborne Sound Insulation Performance by Laboratory Test (실험실 실험을 통한 벽체 차음성능 측정의 신뢰성 향상을 위한 실험적 연구)

  • Kim, Hang;Park, Hyeon Ku;Ku, Hee Mo;Kim, Sun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.35-44
    • /
    • 2014
  • Sound pressure levels in the receiving room while testing airborne sound insulation performance are varied by the measuring points. This may increase the measurement error, then decrease the measurement reliability. With this reason the research has carried out on the method to reduce deviations of sound pressure level in the ISO type rectangular laboratory focusing on the measurement of airborne sound insulation performance. Tests were made to see the effect of sound absorption in the receiving room, loudspeaker locations, microphones locations and flanking transmission path. Consequently, it was resulted that sound absorption in the receiving room and the loudspeaker location have influence on the sound level deviations especially in the low frequency. The microphone location was very important to get measurement reliability. The effective measuring point, which the sound level difference with average sound pressure level is within 2 dB, could yield most reliable average sound pressure level. Therefore it is necessary to find the effective measuring points in the receiving room. Flanking transmission path should be sealed using sound absorber or magnet etc. to prevent from lowering the sound insulation performance.

A Reduction Method of Reflected Waves for Investigation of Sound Source Location

  • Jang Yun-Seok
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.251-255
    • /
    • 2005
  • When the extracorporeal shock wave lithotriptor is operated, sounds can be heard. Then that might be a question about the location where the sounds come from. For the purpose of investigating the fact, we identify the location of the sounds radiated using one hydrophone. In order to carry out the experiment, it is needed to obtain direct waves from objects. Therefore, we present an experimental method to reduce reflected waves for obtaining direct waves only. The experimental results show the amplitude of waves can be attenuated about 28dB due to a silicon rubber plate of 8.5mm attached at the bottom. This is a quantified result that can expect to obtain the direct waves using the proposed method. Then, we carried out the experiment for the sound source location. From the experimental results, we can undoubtedly present a fact that the sounds are radiated from the objects to be shot due to shock waves.

Investigation of the Speech Intelligibility of Classrooms Depending on the Sound Source Location

  • Kim Jeong Tai;Haan Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.139-143
    • /
    • 2005
  • The present study aims to investigate the effects of speaker location on the speech intelligibility in a classroom. In order to this, acoustic measurements were undertaken in a classroom with three different sound source locations such as center of front wall (FC), both sides of front wall (FS) and the center of ceiling (CC). SPL, RT, $D_{50}$, RASTI were measured in the 9 measurement points with same sound power level of sound source and MLS was used as the sound source signal. Also, subjective listening tests were carried out using Korean language listening materials which were recorded in an anechoic chamber. The recorded syllables were replayed and recorded again in the classroom with same sound source at three different locations and listening tests were undertaken to 20 respondents who were asked to write the correct syllables which were recorded in the classroom. The results show that higher sound intelligibility ($D_{50}$ of $47\%$, RASTI of 0.56) was obtained when sound source was located at the FS. The results also show that high sound intelligibility was obtained at the area nearby walls.

On Location Security Solutions in Vehicular Ad Hoc Networks

  • Hussain, Rasheed;Son, Junggab;Oh, Heekuck
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1053-1056
    • /
    • 2012
  • Location information is considered to be of prime importance in Vehicular Ad Hoc NETworks (VANETs) because important decisions are made based on accurate and sound location information. Vehicles exchange their whereabouts in the form of scheduled beacon messages with their neighbors. These messages contain location, speed, time, and lane information etc. In this paper we aim at the location security in VANET and emphasize on the confidentiality and integrity of location information in case of Nonline-of-Sight (NLoS). For location confidentiality we propose a geolock-based mechanism whereas for location integrity we leverage cooperation among neighbors. In case of NLoS, the verifier vehicle asks its one-hop neighbors in an efficient way to verify the claimed location of the node on his behalf. On the basis of trust values and weightage assigned to neighbors, it is decided whether the verification is sound.

Tunneling Effect on Sound Transmission Loss Measurement (차음성능 계측시 터널링 효과에 관한 해석적 연구)

  • 김봉기;김재승;김현실;강현주;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1228-1233
    • /
    • 2002
  • This study is aimed to evaluate a tunneling effect in association with the measurement of sound transmission loss. Based on the formulation for sound transmission loss of a finite panel in the presence of tunnel, variations of the sound transmission loss with parameters such as the location of panel and tunnel depth are investigated. It can be seen that differences in the sound transmission loss are quite evident below coincidence frequency and the sound transmission loss greatly depends on panel location in the tunnel. In comparison with the case without a tunnel, maximum difference occurs in the case where the panel is placed on the center of the tunnel and the flushing with the end of the tunnel gives the better estimation of transmission loss.

  • PDF

Sound Source Localization using HRTF database

  • Hwang, Sung-Mok;Park, Young-Jin;Park, Youn-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.751-755
    • /
    • 2005
  • We propose a sound source localization method using the Head-Related-Transfer-Function (HRTF) to be implemented in a robot platform. In conventional localization methods, the location of a sound source is estimated from the time delays of wave fronts arriving in each microphone standing in an array formation in free-field. In case of a human head this corresponds to Interaural-Time-Delay (ITD) which is simply the time delay of incoming sound waves between the two ears. Although ITD is an excellent sound cue in stimulating a lateral perception on the horizontal plane, confusion is often raised when tracking the sound location from ITD alone because each sound source and its mirror image about the interaural axis share the same ITD. On the other hand, HRTFs associated with a dummy head microphone system or a robot platform with several microphones contain not only the information regarding proper time delays but also phase and magnitude distortions due to diffraction and scattering by the shading object such as the head and body of the platform. As a result, a set of HRTFs for any given platform provides a substantial amount of information as to the whereabouts of the source once proper analysis can be performed. In this study, we introduce new phase and magnitude criteria to be satisfied by a set of output signals from the microphones in order to find the sound source location in accordance with the HRTF database empirically obtained in an anechoic chamber with the given platform. The suggested method is verified through an experiment in a household environment and compared against the conventional method in performance.

  • PDF

The Design of IoT Device System for Disaster Prevention using Sound Source Detection and Location Estimation Algorithm (음원탐지 및 위치 추정 알고리즘을 이용한 방재용 IoT 디바이스 시스템 설계)

  • Ghil, Min-Sik;Kwak, Dong-Kurl
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.53-59
    • /
    • 2020
  • This paper relates to an IoT device system that detects sound source and estimates the sound source location. More specifically, it is a system using a sound source direction detection device that can accurately detect the direction of a sound source by analyzing the difference of arrival time of a sound source signal collected from microphone sensors, and track the generation direction of a sound source using an IoT sensor. As a result of a performance test by generating a sound source, it was confirmed that it operates very accurately within 140dB of the acoustic detection area, within 1 second of response time, and within 1° of directional angle resolution. In the future, based on this design plan, we plan to commercialize it by improving the reliability by reflecting the artificial intelligence algorithm through big data analysis.