• Title/Summary/Keyword: Sound classification

Search Result 299, Processing Time 0.024 seconds

Algorithm for Discrimination of Brown Rice Kernels Using Machine Vision

  • C.S. Hwang;Noh, S.H.;Lee, J.W.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.823-833
    • /
    • 1996
  • An ultimate purpose of this study is to develop an automatic brown rice quality inspection system using image processing technique. In this study emphasis was put on developing an algorithm for discriminating the brown rice kernels depending on their external quality with a color image processing system equipped with an adaptor for magnifying the input image and optical fiber for oblique illumination. Primarily , geometrical and optical features of sample images were analyzed with unhulled paddy and various brown rice kernel samples such as sound, cracked, green-transparent , green-opaque, colored, white-opaque and brokens. Secondary, an algorithm for discrimination of the rice kernels in static state was developed on the basis of the geometrical and optical parameters screened by a statistical analysis(STEPWISE and DISCRIM Procedure, SAS ver.6). Brown rice samples could be discriminated by the algorithm developed in this study with an accuracy of 90% to 96% for the sound , cracked, colored, broken and unhulled , about 81% for the green-transparent and the white-opaque and about 75% for the green-opaque, respectively. A total computing time required for classification was about 100 seconds/1000 kernels with the PC 80486-DX2, 66MHz.

  • PDF

Metrics for evaluation of heavy-weight impact noise generated by impact ball (임팩트 볼에 의한 중량충격음의 평가 메트릭스 설정)

  • Lee, Pyoung-Jik;Jeong, Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.636-640
    • /
    • 2006
  • In this study, metrics for evaluation of heavy-weight impact noise were investigated. Heavy-weight impact noises generated by impact ball were recorded in real apartments using binaural microphone. Those sounds were classified into three groups according to frequency characteristics in order to control aspects which affect subjective responses to heavy-weight impact noise. Sound sources for auditory experiment were selected based on the classification result. Then auditory experiments were conducted to investigate the relationship between level indices and subjective responses. The results showed that $L_{Aeq},\;L_{Amax}$ and $LL_z$ as well as $L_{iFmax,AW}$ were highly correlated with subjective response. Therefore, $L_{Aeq}$ and $L_{Amax}$ can be used as metrics for evaluation of heavy-weight impact noise. In further studies, it is needed to verify classification of heavy-weight impact noise generated by bang machine and impact ball.

  • PDF

A Study on the Rate Classification of Floor Impact Noise (바닥충격음의 평가등급 설정에 관한 연구)

  • Ryu, Jong-Kwan;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.486-491
    • /
    • 2002
  • Auditory experiments based on subjective responses were undertaken for the standard heavy and light weight impact noise. Relations between noise levels and subjective evaluations were also investigated. As a result, it was shown that the noise class was rated with the range of sensible satisfaction by investigating the various social responses for the floor impact noise. The rate classification for the heavy weight impact noise is suggested as a design guide for concrete slabs which satisfy the residents' requirements in various sound insulation capacities of multistory residential buildings.

  • PDF

Disassembly and Classification for Recovery of EOL Products

  • Min, Sun-Dong;Matsuoka, Shinobu;Muraki, Masaaki
    • Industrial Engineering and Management Systems
    • /
    • v.2 no.1
    • /
    • pp.35-44
    • /
    • 2003
  • Recovery of end-of-life (EOL) products is an environmentally and economically sound way to achieve many of the goals of sustainable development. Many product recovery systems are dependent upon destructive disassembly such as shredding, which undesirably causes a large volume of shredder dust and makes parts reuse impossible. Although non-destructive disassembly has been considered as an alternative for solving the problems, the classification of disassembled items has not been sufficiently investigated. In this paper, we propose a model that mathematically optimizes the disassembly and classification of EOL products. Based on the AND/OR graph that illustrates all possible disassembly sequences of a given product, we identify the physical properties that are considered as constraints in the model. As a result of the solution procedure, the recovery problem can be transformed into a mixed integer linear programming (MILP) model. We show an example that illustrates the concept of our model.

A Study on the Development of Classifier for Recycling of Abrasive (연마제 재활용을 위한 분급장치 개발에 관한 연구)

  • Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.20-24
    • /
    • 2017
  • For process improvement and cutting down on expenses in solar cell industry, it is necessary to improve recycling process of wafer manufacturing. In this research, a study is introduced to develop classifier which is for recycling of abrasive. First of all, recycling process of wafer manufacturing is analyzed. And then, 3 steps of experiments such as oil removal, impurities removal and classification were executed. For the classification of slurry, a classifier is designed and manufactured. From experiments, it is verified that ultra sound vibration and flux are very important factors for classification. By experiencing the recycling processes and making devices, the technique can be initiated industry if needed such as decreasing waste and cutting down on expenses.

  • PDF

Real Time Environmental Classification Algorithm Using Neural Network for Hearing Aids (인공 신경망을 이용한 보청기용 실시간 환경분류 알고리즘)

  • Seo, Sangwan;Yook, Sunhyun;Nam, Kyoung Won;Han, Jonghee;Kwon, See Youn;Hong, Sung Hwa;Kim, Dongwook;Lee, Sangmin;Jang, Dong Pyo;Kim, In Young
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2013
  • Persons with sensorineural hearing impairment have troubles in hearing at noisy environments because of their deteriorated hearing levels and low-spectral resolution of the auditory system and therefore, they use hearing aids to compensate weakened hearing abilities. Various algorithms for hearing loss compensation and environmental noise reduction have been implemented in the hearing aid; however, the performance of these algorithms vary in accordance with external sound situations and therefore, it is important to tune the operation of the hearing aid appropriately in accordance with a wide variety of sound situations. In this study, a sound classification algorithm that can be applied to the hearing aid was suggested. The proposed algorithm can classify the different types of speech situations into four categories: 1) speech-only, 2) noise-only, 3) speech-in-noise, and 4) music-only. The proposed classification algorithm consists of two sub-parts: a feature extractor and a speech situation classifier. The former extracts seven characteristic features - short time energy and zero crossing rate in the time domain; spectral centroid, spectral flux and spectral roll-off in the frequency domain; mel frequency cepstral coefficients and power values of mel bands - from the recent input signals of two microphones, and the latter classifies the current speech situation. The experimental results showed that the proposed algorithm could classify the kinds of speech situations with an accuracy of over 94.4%. Based on these results, we believe that the proposed algorithm can be applied to the hearing aid to improve speech intelligibility in noisy environments.

A Merging Algorithm with the Discrete Wavelet Transform to Extract Valid Speech-Sounds (이산 웨이브렛 변환을 이용한 유효 음성 추출을 위한 머징 알고리즘)

  • Kim, Jin-Ok;Hwang, Dae-Jun;Paek, Han-Wook;Chung, Chin-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.289-294
    • /
    • 2002
  • A valid speech-sound block can be classified to provide important information for speech recognition. The classification of the speech-sound block comes from the MRA(multi-resolution analysis) property of the DWT(discrete wavelet transform), which is used to reduce the computational time for the pre-processing of speech recognition. The merging algorithm is proposed to extract valid speech-sounds in terms of position and frequency range. It needs some numerical methods for an adaptive DWT implementation and performs unvoiced/voiced classification and denoising. Since the merging algorithm can decide the processing parameters relating to voices only and is independent of system noises, it is useful for extracting valid speech-sounds. The merging algorithm has an adaptive feature for arbitrary system noises and an excellent denoising SNR(signal-to-nolle ratio).

CNN-based Automatic Machine Fault Diagnosis Method Using Spectrogram Images (스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법)

  • Kang, Kyung-Won;Lee, Kyeong-Min
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.121-126
    • /
    • 2020
  • Sound-based machine fault diagnosis is the automatic detection of abnormal sound in the acoustic emission signals of the machines. Conventional methods of using mathematical models were difficult to diagnose machine failure due to the complexity of the industry machinery system and the existence of nonlinear factors such as noises. Therefore, we want to solve the problem of machine fault diagnosis as a deep learning-based image classification problem. In the paper, we propose a CNN-based automatic machine fault diagnosis method using Spectrogram images. The proposed method uses STFT to effectively extract feature vectors from frequencies generated by machine defects, and the feature vectors detected by STFT were converted into spectrogram images and classified by CNN by machine status. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.

Development of sound location visualization intelligent control system for using PM hearing impaired users (청각 장애인 PM 이용자를 위한 소리 위치 시각화 지능형 제어 시스템 개발)

  • Yong-Hyeon Jo;Jin Young Choi
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.105-114
    • /
    • 2022
  • This paper is presents an intelligent control system that visualizes the direction of arrival for hearing impaired using personal mobility, and aims to recognize and prevent dangerous situations caused by sound such as alarm sounds and crack sounds on roads. The position estimation method of sound source uses a machine learning classification model characterized by generalized correlated phase transformation based on time difference of arrival. In the experimental environment reproducing the road situations, four classification models learned after extracting learning data according to wind speeds 0km/h, 5.8km/h, 14.2km/h, and 26.4km/h were compared with grid search cross validation, and the Muti-Layer Perceptron(MLP) model with the best performance was applied as the optimal algorithm. When wind occurred, the proposed algorithm showed an average performance improvement of 7.6-11.5% compared to the previous studies.

Heart Sound-Based Cardiac Disorder Classifiers Using an SVM to Combine HMM and Murmur Scores (SVM을 이용하여 HMM과 심잡음 점수를 결합한 심음 기반 심장질환 분류기)

  • Kwak, Chul;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.149-157
    • /
    • 2011
  • In this paper, we propose a new cardiac disorder classification method using an support vector machine (SVM) to combine hidden Markov model (HMM) and murmur existence information. Using cepstral features and the HMM Viterbi algorithm, we segment input heart sound signals into HMM states for each cardiac disorder model and compute log-likelihood (score) for every state in the model. To exploit the temporal position characteristics of murmur signals, we divide the input signals into two subbands and compute murmur probability of every subband of each frame, and obtain the murmur score for each state by using the state segmentation information obtained from the Viterbi algorithm. With an input vector containing the HMM state scores and the murmur scores for all cardiac disorder models, SVM finally decides the cardiac disorder category. In cardiac disorder classification experimental results, the proposed method shows the relatively improvement rate of 20.4 % compared to the HMM-based classifier with the conventional cepstral features.