• 제목/요약/키워드: Sound and Energy Absorption

검색결과 37건 처리시간 0.026초

An Experimental Study on the Absorption Property of Slit Absorbers with Composite Details

  • Jeong, Dae-Up;Joo, Moon-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권2E호
    • /
    • pp.81-90
    • /
    • 2002
  • Single absorbing materials and Helmholtz resonators have limited absorption characteristics over limited frequency ranges due to their structures and properties. Porous materials are highly absorptive for mid and high frequency ranges, while they have little sound absorption for low frequency sounds. Helmholtz resonators are generally used to absorb sound energy for a specified frequency range. Hence they have limited capability in controlling the overall acoustic properties of a space. Not much has been known about useful finishing materials which have enough rigidity and absorption over broad frequency range, in spite of wide demands from acoustic designers and consultants. The present work measured and analyzed absorption characteristics of a slit absorber by varying surface materials, depths of air gap, dimensions of slat and slit widths. It was found that the narrower the slit width, the larger the absorptions over the wide frequency ranges and the pattern was dependent on the presence of porous material. Narrower slat's width tend to increase the slit absorber's absorption more or less. Absorption coefficients at low frequency ranges were dramatically improved (from 0.23 to 0.56) by increasing air gap when porous materials were present.

대공간에서 전기음향 시스템에 따른 음향특성 변화 (The Effect of Sound Reinforcement Systems on the Acoustics of a Large-Span Spaces)

  • 정대업;주현경;최영지
    • 한국공간구조학회논문집
    • /
    • 제11권1호
    • /
    • pp.67-75
    • /
    • 2011
  • 본 연구는 컴퓨터 시뮬레이션을 이용하여 대공간에서 스피커 시스템의 변화에 따른 음장의 특성 변화를 검토하였다. 실의 음향특성변화는 실의 흡음력과 동시에 스피커 시스템의 지향성, 설치높이 및 개수를 조절하면서 예측 분석하였다. 연구 결과, 명료도 관련 지표인 D50 및 RASTI는 실의 흡음력 증가의 변화를 효과적으로 나타내는 것으로 분석되었다. 또 초기감쇠시간은 흡음력 증가에 따라 선형적으로 감소하였으나 저 고주파수대역에서는 오히려 증가하거나 변화를 보이지 않았으며, 잔향시간은 전체주파수대역에서 실의 흡음력 증가에 따라 감쇠하였으나 주파수대역별 결과에서는 오히려 증가하거나 비슷한 결과를 보였다. 이는 실의 음향특성이라기 보다는 감쇠구간의 비선형성에 기인한 것으로 판단된다. 스피커 시스템의 적용에 따른 분석결과, D50 및 RASTI는 실의 흡음력 증가에 크게 상관없이 거의 모든 시스템에서 'fair'이상으로 평가되었으며, 스피커의 설치위치가 높을수록 실의 흡음력 증가보다 스피커 지향특성 변화에 더 큰 영향을 받는 것으로 나타났다. 또한 스피커의 설치위치가 낮을수록 실의 잔향시간은 더 짧은 것으로 분석되었다. 시스템의 적용에 따른 잔향시간은 스피커 설치높이가 높을 경우 실의 흡음력 증가에 비례하여 감쇠하는 경향을 보였으나 스피커 설치높이가 낮은 경우 흡음력 증가에 의한 영향보다 시스템의 영향을 받는 것으로 나타났다.

공기층을 갖는 공조덕트 구조물에서 흡음재의 흡음특성에 관한 연구 (A Study on the Absorption Characteristics of Absorbents in Duct System with the Air Cavity)

  • 김찬묵;김도연;방극호
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.892-897
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have dilemma which has to assume the wave in duct to be a plane wave. Under this assumption. applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excited higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

Assessment of lightweight recycled crumb rubber-cement composite produced by preplaced method

  • Shah, Syed Nasir;Mo, Kim Hung;Yap, Soon Poh;Putra, Azma;Othman, Muhammad Nur
    • Advances in concrete construction
    • /
    • 제11권5호
    • /
    • pp.409-417
    • /
    • 2021
  • The incorporation of non-biodegradable tyre waste in cement-based material has gained more interest towards sustainable construction these days. Crumb rubber (CR) from waste tyre is an alternative for sand replacement in low strength applications. Many researchers have studied CR cement-based materials produced by normal mixing (NM) method and reported a significant decrease in compressive strength due to CR. To compensate this strength loss, this research aims to study the innovative incorporation of CR in cement composite via the preplaced mixing (PM) method. In this investigation, cement composite was produced with NM and PM methods by replacing sand with 0%, 50%, and 100% CR by volume. The test results showed no significant difference in terms of densities of cement composite prepared with both mixing methods. However, cement composite prepared with PM method had lower strength reduction (about 10%) and lowered drying shrinkage (about 20%). In addition, the sound absorption coefficient and noise reduction coefficient of CR cement composite prepared by PM method were in similar range as those prepared with NM method. Overall, the results demonstrate that the PM method is promising, and the maximum replacement level of 50% is recommended for CR in the cement composite.

글루타티온이 캡핑된 ZnSe 나노 입자 발광 특성에 미치는 합성 조건의 영향 (Effects of Synthesis Conditions on Luminescence Characteristics of Glutathione Capped ZnSe Nano particles)

  • 백금지;송하연;이민서;홍현선
    • 한국분말재료학회지
    • /
    • 제28권1호
    • /
    • pp.44-50
    • /
    • 2021
  • Zinc selenide (ZnSe) nanoparticles were synthesized in aqueous solution using glutathione (GSH) as a ligand. The influence of the ligand content, reaction temperature, and hydroxyl ion concentration (pH) on the fabrication of the ZnSe particles was investigated. The optical properties of the synthesized ZnSe particles were characterized using various analytical techniques. The nanoparticles absorbed UV-vis light in the range of 350-400 nm, which is shorter than the absorption wavelength of bulk ZnSe particles (460 nm). The lowest ligand concentration for achieving good light absorption and emission properties was 0.6 mmol. The reaction temperature had an impact on the emission properties; photoluminescence spectroscopic analysis showed that the photo-discharge characteristics were greatly enhanced at high temperatures. These discharge characteristics were also affected by the hydroxyl ion concentration in solution; at pH 13, sound emission characteristics were observed, even at a low temperature of 25℃. The manufactured nanoparticles showed excellent light absorption and emission properties, suggesting the possibility of fabricating ZnSe QDs in aqueous solutions at low temperatures.

공기층을 갖는 실제덕트 구조물에서의 소음저감에 관한 연구 (A study on the noise reduction of practical duct system with the air cavity)

  • 김찬묵;이두호;방극호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1687-1692
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have a dilemma which has to assume the wave in duct to be a plane wave. Under this assumption, applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excites higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

정상상태조건에서의 개구부로 연결된 커플룸의 음향 특성 (Room Acoustic Properties of Coupled Rooms Connected by an Aperture in the Steady State Condition)

  • 나혜중;임병덕
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.315-322
    • /
    • 2016
  • Room acoustic properties of coupled rooms connected by an aperture has been analyzed using statistical acoustic model based on the diffused sound field assumption, which has limitation in dealing with the parameters such an room geometries and non uniform absorptivity of the boundary surfaces. In order to overcome these difficulties the acoustic diffusion model has been introduced, by which distribution of the acoustic energy density can be analyzed for various shapes and wall absorptivity. In this study acoustic properties of coupled rooms connected by an aperture(e.g. door) is analyzed using acoustic diffusion equation, which is solved numerically. The mean energy densities of two rooms obtained by the diffusion model are compared with those from the statistical model. The results show good agreement for various coupling aperture sizes and absorption coefficients. For a limiting case when the partition wall is substituted by an aperture and the two rooms eventually forms a single room, results of coupled room analysis using diffusion model show good agreement with those of a single room.

구조용 경량 알루미늄 발포금속의 기계적 특성 연구 분석 (Mechanical Characteristics Analysis of Structural Light-weight Aluminum Foam)

  • 마정범;이정익
    • 한국융합학회논문지
    • /
    • 제2권3호
    • /
    • pp.1-6
    • /
    • 2011
  • 대표적인 경량금속 중의 하나인 알루미늄 폼재의 연구동향을 기계적인 측면에서 고찰하여 보았다. 특히 기공(pore)을 가진 알루미늄재료는 난연성, 감쇠특성, 에너지흡수 성능 등 여러 측면에서 기존의 폴리머 폼재보다 우수한 기계적 성능을 가지고 있고, 더욱이 재활용이 가능하다는 면에서 환경보호에 관심이 집중되고 있는 현 시점에서 연구가 활발히 진행되고 있다. 폼재의 일반적 특성, 에너지 흡수 및 소음흡수 특성에 대해 살펴보고 폼재가 적용된 사례들에 대한 분석을 통해 향후 폼재와 외곽 구조재의 접합문제 등에 대한 제언을 하였다.

선내 격실 소음 추정 자동화 프로그램 개발 (Development of Automated Program for Noise Prediction in Shipboard Compartments)

  • 오영근;박근효;류성선;강태욱;이동현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.519-524
    • /
    • 2011
  • The aim of this study is to develop an automated program for noise prediction in shipboard compartments, for this purpose of calculating noise levels accurately and quickly. The program calculates sound power level at HVAC components based on the empirical method suggested by NEBB and utilizing the manufacturer's test data. The program developed uses the GUI functions to help in efficient modeling and calculation. To verify the reliability of developed program, the predicted data was compared with the measured data in shipboard compartments. As a result, the average difference between predicted and measured data is ${\pm}3dB$.

  • PDF

Consideration of Temperature and Slip Correction for Photothermal Spectrometry

  • Lee, Jeonghoon
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권1호
    • /
    • pp.86-90
    • /
    • 2015
  • Temperature was considered to estimate the minimum detectable absorption coefficient of aerosol particles from photothermal spectroscopy. Light energy absorbed by subsequent emission from the aerosol results in the heating of the aerosol sample and consequently causes a temperature change as well as changes in thermodynamic parameters of the sample. This thermal effect is the basis of photothermal spectroscopy. Photothermal spectroscopy has several types of techniques depending on how the photothermal effects are detected. Photothermal interferometry traces the photothermal effect, refractive index, using an interferometer. Photoacoustic spectroscopy detects the photothermal effect, sound wave, using a microphone. In this study, it is suggested that the detection limit for photothermal spectroscopy can be influenced by the introduction of a slip correction factor when the light absorption is determined in a high temperature environment. The minimum detectable absorption coefficient depends on the density, the specific heat and the temperature, which are thermodynamic properties. Without considering the slip correction, when the temperature of the environment is 400 K, the minimum detectable absorption coefficient for photothermal interferometry increases approximately 0.3% compared to the case of 300 K. The minimum detectable absorption coefficient for photoacoustic spectroscopy decreases only 0.2% compared to the case of 300 K. Photothermal interferometry differs only 0.5% point from photoacoustic spectroscopy. Thus, it is believed that photothermal interferometry is reliably comparable to photoacoustic spectroscopy under 400 K.