• 제목/요약/키워드: Sound Velocity

검색결과 399건 처리시간 0.023초

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

2.25Cr1Mo강의 크리프 손상에 대한 초음파 시험평가 (Ultrasonic Evaluation for the Creep Damage of 2.25Cr1Mo Steel)

  • 허광범;이인철;정계조;조용상;이상국;김재훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.31-36
    • /
    • 2000
  • High temperature and pressure materials in power plant are degraded by creep damage, if they are exposed to constant loads for long times, which occurs in the load bearing structures of pressurized components operating at elevated temperatures. Many conventional measurement techniques such as replica method, electric resistance method, and hardness test method for measuring creep damage have been used. So far, the replica method is mainly used for the Inspection of High temperature and pressure components. This technique is, however, restricted to applications at the surface of the testpieces and cannot be used to material inside. In this paper, ultrasonic evaluation for the detection of creep damage in the form of cavaties on grain boundaries or integranular microcracks are carried out. And the absolute measuring method of quantitative ultrasonic velocity technique for Cr-Mo material degradation is analyzed. As a result of ultrasonic tests for crept specimens, we find that the sound velocity is decreased as the increase of creep life fraction$({\Phi}_c)$ and also, confirmed that hardness is decreased as the increase of creep life fraction$({\Phi}_c)$ but the coefficient of ultrasonic attenuation is increased as the increase of creep life fraction$({\Phi}_c)$. Finally based on the result in this paper, it can be recognized that the ultrasonic techniques using velocities and attenuation coefficient factor are very useful non-destructive methods to evaluate the degree of material degradation in fossile power plants.

  • PDF

韓半島 周邊海域 海底 表層蓄積物 音波 空曠係數와 생物起源 氣滯含量 (Sound Attenuation Coefficients and Biogenic Gas Content in the Offshore Surficial Sediments Around the Korean Peninsula)

  • 김한준;덕봉철
    • 한국해양학회지
    • /
    • 제25권1호
    • /
    • pp.26-35
    • /
    • 1990
  • 한반도 주변 4개 해혁(포항, 부산, 여수, 군산)의 해저 표층축적물에서 얻은 음향 자료로부터 음속과 음파감쇠를 구하여 물성과의 상관성을 검토하고, 기체함량을 추정 함으로써 음파의 기계적 원인을 분석하였다. 음속 및 음파감쇠의 범위는 각각 1470∼ 1616 m/sec 및 0.0565∼0.6604 dB/kHz-m로서 퇴적물의 유형에 밀접하게 관련된다. 음 파는 coarse silt에서 최대이며 표층퇴적물내 기체 함량의 추정값은 8 ppm 이하로서 퇴적물의 입자가 작을수록 증가한다. Find sand보다 입자가 큰 퇴적물에서는 마찰손실 이 절대적인 음파감쇠의 요인으로 작용하며, 점성손실은 무시할 수 있을 뿐만 아니라 퇴적물의 물성에 따라 변하지 않는다. Coarse silt에서 음파감쇠가 최대인 것은 마찰 손실 뿐만 아니라 silt 입자 차이에 존재하는 더 작은 입자들 간의 결합력이 동시에 작용하기 때문이며 fine 및 medium silt를 경계로 입자가 작아짐에 따라 입자간 결합 력이 주된 감쇠 요인으로 작용한다.

  • PDF

Investigating the Effects of Hearing Loss and Hearing Aid Digital Delay on Sound-Induced Flash Illusion

  • Moradi, Vahid;Kheirkhah, Kiana;Farahani, Saeid;Kavianpour, Iman
    • 대한청각학회지
    • /
    • 제24권4호
    • /
    • pp.174-179
    • /
    • 2020
  • Background and Objectives: The integration of auditory-visual speech information improves speech perception; however, if the auditory system input is disrupted due to hearing loss, auditory and visual inputs cannot be fully integrated. Additionally, temporal coincidence of auditory and visual input is a significantly important factor in integrating the input of these two senses. Time delayed acoustic pathway caused by the signal passing through digital signal processing. Therefore, this study aimed to investigate the effects of hearing loss and hearing aid digital delay circuit on sound-induced flash illusion. Subjects and Methods: A total of 13 adults with normal hearing, 13 with mild to moderate hearing loss, and 13 with moderate to severe hearing loss were enrolled in this study. Subsequently, the sound-induced flash illusion test was conducted, and the results were analyzed. Results: The results showed that hearing aid digital delay and hearing loss had no detrimental effect on sound-induced flash illusion. Conclusions: Transmission velocity and neural transduction rate of the auditory inputs decreased in patients with hearing loss. Hence, the integrating auditory and visual sensory cannot be combined completely. Although the transmission rate of the auditory sense input was approximately normal when the hearing aid was prescribed. Thus, it can be concluded that the processing delay in the hearing aid circuit is insufficient to disrupt the integration of auditory and visual information.

역 경계요소법에 기초한 음향 홀로그래피 개념에 따른 음원 어레이 설계 (Design of Acoustic Source Array Using the Concept of Holography Based on the Inverse Boundary Element Method)

  • 조완호;이정권
    • 한국음향학회지
    • /
    • 제28권3호
    • /
    • pp.260-267
    • /
    • 2009
  • 원하는 복잡한 음장을 지정된 구역에 정확히 형성하는 것은 음향 어레이를 이용한 응용에 있어서 가장 어렵고도 중요한 일이다. 이를 해결하기 위해, 본 논문에서는 역 경계요소법을 원용한 음향홀로그래피 방법을 이용하여 원하는 음장의 특성을 얻기 위한 음원 어레이의 필터 계수를 설계하는 방법을 제안하였다. 음원 파악에 적용되는 음향 홀로그래피는 음장에서의 음압을 측정하여 표면에서의 음원 특성을 재구성하게 되는데, 이와 유사한 음원 설계 문제에서는 목적하는 음장 특성이 주어진 조건이 되며, 음원의 체적 속도는 이러한 음장을 얻기 위한 출력 신호가 된다. 설계 과정에 있어서 먼저 목표 음장의 특성 제한 조건을 갖는 음장 데이터를 구성하고, 음원과 공간을 경계요소법으로 모델링 한 뒤, 소요되는 음원의 정보를 역으로 유도한다. 예제로서 16개의 스피커를 갖는 어레이를 이용해 전방의 반은 평면파 전파, 나머지 반은 정숙공간을 동시에 갖도록 하는 목표 음장을 구현하였다.

Prediction of the Dependence of Phase Velocity on Porosity in Cancellous Bone

  • Lee, Kang-Il;Choi, Min-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권2E호
    • /
    • pp.45-50
    • /
    • 2008
  • In recent years, quantitative ultrasound (QUS) technologies have played a growing role in the diagnosis of osteoporosis. Most of the commercial bone somometers measure speed of sound (SOS) and/or broadband ultrasonic attenuation (EUA) at peripheral skeletal sites. However, the QUS parameters are purely empirical measures that have not yet been firmly linked to physical parameters such as bone strength or porosity. In the present study, the theoretical models for wave propagation in cancellous bone, such as the Biot model, the stratified model, and the modified Biot-Attenborough (MBA) model, were applied to predict the dependence of phase velocity on porosity in cancellous bone. The optimum values for the input parameters of the three models in cancellous bone were determined by comparing the predictions with the previously published measurements in human cancellous bone in vitro. This modeling effort is relevant to the use of QUS in the diagnosis of osteoporosis because SOS is negatively correlated to the fracture risk of bone, and also advances our understanding of the relationship between phase velocity and porosity in cancellous bone.

균일힘 액추에이터와 가속도계 배열을 이용한 지능구조물의 능동구조 음향제어 (Active Structural Acoustical Control of a Smart Structure using Uniform Force Actuator and Array of Accelerometers)

  • 이영섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.368-373
    • /
    • 2003
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of 4$\times$4 accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output con rot system. The theoretical and experimental study of sensor-actuator frequency response function sho vs that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15㏈ in vibration level and about 8 ㏈ in acoustic power level at the (1, 1) mode of the smart Panel. It has been also shown that the shaping error of PVDF actuator could limit he stability and performance of the control system.

  • PDF

음장이 등온원통으로부터의 강제대류 열전달에 미치는 영향 (Effect of Sound Field on the Forced Convection Heat Transfer from an Isothermal Cylinder)

  • 권영필
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.373-380
    • /
    • 1988
  • 본 연구의 목적은 음장의 입자속도가 기류의 평균속도와 비슷한 크기인 경우에 원통으로부터 열전달의 동특성과 한 사이클의 평균값인 평균열전달이 음장에 의하여 어떠한 영향을 받는가를 구하기 위한 것이다.

등속 이동 음원의 통과소음 스펙트럼 추정에 관한 연구 (Spectral Estimation of the Pass-by Noise of an Acoustic Source)

  • 임병덕;김덕기
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1597-1604
    • /
    • 2005
  • The identification of a moving noise source is important in reducing the source power of the transport systems such as airplanes or high speed trains. However, the direct measurement using a microphone running with noise source is usually difficult due to wind noise, white the source motion distorts the frequency characteristics of the pass-by sound measured at a fixed point. In this study the relationship between the spectra of the source and the pass-by sound signal is analyzed for an acoustic source moving at a constant velocity. Spectrum of the sound signal measured at a fixed point has an integral relationship with the source spectrum. Nevertheless direct conversion of the measured spectrum to the source spectrum is ill-posed due to the singularity of the integral kernel. Alternatively a differential equation approach is proposed, where the source characteristics can be recovered by solving a differential equation relating the source signal to the distorted measurement in time domain. The parameters such as the source speed and the time origin, required beforehand, are also determined only from the frequency-phase relationship using an auxiliary measurement. With the help of the regularization method, the source signal is successfully recovered. The effects of the parameter errors to the estimated frequency characteristics of the source are investigated through numerical simulations.

승용차량의 중주파수 대역 구조기인 소음예측을 위한 FE-SEA 하이브리드 모델 개발 (Development of FE-SEA Hybrid Model for the Prediction of Vehicle Structure-borne Noise at Mid-frequencies)

  • 유지우;채기상;;임종윤
    • 한국소음진동공학회논문집
    • /
    • 제24권8호
    • /
    • pp.606-612
    • /
    • 2014
  • Vehicle simulation models for noise and vibration prediction have been developed so far generally in two schemes. One is FE models generally used for problems below 200 Hz such as booming noise, and the other is SEA models for high frequencies of more than 1 kHz, representatively related to sound packages. There have been many researches to develop a simulation model for 200~1000 Hz, so-called mid-frequency region, and this paper shows one practical result that covers the trimmed body of a sedan vehicle. The simulation model is developed based on an FE model, and then FE elements at some areas are substituted with SEA elements to reduce DOFs. SEA panels are described by modal density, radiation efficiency, stiffness and damping characteristics that are found from some numerical assessments. Sound packages are modeled similarly as a conventional SEA model. The results obtained from the hybrid model were compared to experimental results. Predicted pressure and vibrational velocity generally show a good agreement. The developed simulation model and related technology are successfully being used in vehicle development process.