• Title/Summary/Keyword: Sound System Design

Search Result 481, Processing Time 0.025 seconds

Evaluation of design variables to improve noise radiation and insulation performances of a dash panel component of an automotive vehicle (방사소음 및 투과소음에 대한 승용차량 대시패널의 설계인자별 영향도분석)

  • Yoo, Ji-Woo;Chae, Ki-Sang;Park, Chul-Min;Suh, Jin-Kwan;Lee, Ki-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.526-531
    • /
    • 2011
  • A dash panel component, close to passengers, plays a very important role to protect heat and noise from a power train. Meanwhile, it is also a main path that transfers vibration energy and eventually radiates acoustic noise into the cavity. Therefore, it seems important to provide an optimal design scheme incorporating sound packages such as dash isolation pad and carpet, as well as structures. The present study is the extension of the previous investigation how design variables affect sound radiation, which was carried out using the simple plate and framed system. The system taken into account in this paper is a dash panel component of a sedan, which includes A pillar, front side member, dash panel and the corresponding sound packages. Design variables such as panel thickness and sound package layers are investigated how they are related for the better radiation performance (i.e. structure-borne) and sound transmission loss (i.e. air borne).

  • PDF

Design and Implementation of Vocal Sound Variation Rules for Korean Language (한국어 음운 변동 처리 규칙의 설계 및 구현)

  • Lee, Gye-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.3
    • /
    • pp.851-861
    • /
    • 1998
  • Korean language is to be characterized by the rich vocal sound variation. In order to increase the probability of vocal sound recognition and to provide a natural vocal sound synthesis, a systematic and thorough research into the characteristics of Korean language including its vocal sound changing rules is required. This paper addresses an effective way of vocal sound recognition and synthesis by providing the design and implementation of the Korean vocal sound variation rule. The regulation we followed for the design of the vocal sound variation rule is the Phonetic Standard(Section 30. Chapter 7) of the Korean Orthographic Standards. We have first factor out rules for each regulations, then grouped them into 27 groups for eaeh final-consonant. The Phonological Change Processing System suggested in the paper provides a fast processing ability for vocal sound variation by a single application of the rule. The contents of the process for information augmented to words or the stem of innected words are included in the rules. We believe that the Phonological Change Processing System will facilitate the vocal sound recognition and synthesis by the sentence. Also, this system may be referred as an example for similar research areas.

  • PDF

Reactive sound system suitable for platform genre games (플랫폼 게임에 적용될 수 있는 반응성 사운드 시스템)

  • Park, Dae-Hwan;Lee, Dong Lyor;Lee, Wan Bok
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.4
    • /
    • pp.7-12
    • /
    • 2013
  • Presence of music in the modern game is getting bigger and bigger, and storytelling in the area of game play a leading role in many cases. Platform game is one type of action game genre. In its nature, the character and the object in a game are closely coupled, thus they have intermate relation with reactive sound system. In this study, we tried to build a effective and reactive sound system which is suitable for the storytelling of platform game. In addition, we speculated various aspects of game including psychological, musical and social aspects, finally investigating the future aspects of the game music.

Aurally Relevant Analysis by Synthesis - VIPER a New Approach to Sound Design -

  • Daniel, Peter;Pischedda, Patrice
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1009-1009
    • /
    • 2003
  • VIPER a new tool for the VIsual PERception of sound quality and for sound design will be presented. Requirement for the visualization of sound quality is a signal analysis modeling the information processing of the ear. The first step of the signal processing implemented in VIPER, calculates an auditory spectrogram by a filter bank adapted to the time- and frequency resolution of the human ear. The second step removes redundant information by extracting time- and frequency contours from the auditory spectrogram in analogy to contours of the visual system. In a third step contours and/or auditory spectrogram can be resynthesised confirming that only aurally relevant information were extracted. The visualization of the contours in VIPER allows intuitively to grasp the important components of a signal. Contributions of parts of a signal to the overall quality can be easily auralized by editing and resynthesising the contours or the underlying auditory spectrogram. Resynthesis of time contours alone allows e.g. to auralize impulsive components separately from the tonal components. Further processing of the contours determines tonal parts in form of tracks. Audible differences between two versions of a sound can be visually inspected in VIPER through the help of auditory distance spectrograms. Applications are shown for the sound design of several interior noises of cars.

  • PDF

Evaluation of Design Variables to Improve Sound Radiation and Transmission Loss Performances of a Dash Panel Component of an Automotive Vehicle (방사소음 및 투과소음에 대한 승용차량 대시패널의 설계인자 별 영향도 분석)

  • Yoo, Ji-Woo;Chae, Ki-Sang;Park, Chul-Min;Suh, Jin-Kwan;Lee, Ki-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • While a dash panel component, close to passengers, plays a very important role to protect heat and noise from a power train, it is also a main path that transfers vibration energy and eventually radiates acoustic noise into the cavity. Therefore, it is important to provide optimal design schemes incorporating sound packages such as a dash isolation pad and a floor carpet, as well as structures. The present study is the extension of the previous investigation how design variables affect sound radiation, which was carried out using the simple plate and framed system. A novel FE-SEA hybrid simulation model is used for this study. The system taken into account is a dash panel component of a sedan vehicle, which includes front pillars, front side members, a dash panel and corresponding sound packages. Design variables such as panel thicknesses and sound packages are investigated how they are related to two main NVH indexes, sound radiation power(i.e. structure-borne) and sound transmission loss(i.e. air borne). In the viewpoint of obtaining better NVH performance, it is shown that these two indexes do not always result in same tendencies of improvement, which suggests that they should be dealt with independently and are also dependent on frequency regions.

Exhaust System Design for the Integrated Automotive Muffler (고성능 일체형 자동차 소음기를 장착한 배기계 설계)

  • Jeong, Soo-Jin;Kang, Woo;Lee, Jeom-Joo;Kim, Tae-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.24-31
    • /
    • 2009
  • This paper has been focused on the development of integrated automotive muffler system to meet getting more stringent sound quality target. Typically, muffler system consists of resonator and main muffler. The many varieties in exhaust pipe routing and the flexibility in muffler design make it possible to design an exhaust system to deliver tailpipe sound for specific sound quality requirement. In recent, it is strongly recommended that the function of resonator be merged into that of main muffler due to severe space limitation of underbody. The main objective of the paper is to study the effects of various geometrical parameters on the muffler performance. This work has succeeded in eliminating resonator without loss of muffler performance. This work has also investigated the effect of diameter of hole, geometries of pipes and location of muffler on the sound quality.

Flat Speaker Design by Optimization of Plane Actuator (평판 작동기의 최적화를 통한 평면 스피커 설계)

  • Kim Seung Jo;Hwang Joon-Seok
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.237-242
    • /
    • 1999
  • In this study, a design method using plane actuator is developed to make new speaker system, whose shape is much thinner than that of conventional loudspeaker. Piezofilm(PVDF) is used as plane actuator of flat speaker. To avoid the distortion of sound radiated from flat speaker, the frequency response of radiated sound to be flat is taken as the design objective. The electrode pattern and orientation angle of piezofilm actuator is optimized to satisfy the design objective. The formulation is based on the coupled finite element and boundary element method. Genetic algorithm is used in the optimization process, which is useful in the optimization of discrete design variables. Frequency response with optimized piezofilm actuator is made flat enough to satisfy the design objective. For the enhancement of sound power, double-layered piezofilm actuators are also considered. The sound power with double-layered actuator becomes larger than that with single-layered actuator as expected.

  • PDF

Design of Multichannel Spherical Loudspeaker Array for the Spatial Sound Manipulation (소리의 공간 제어를 위한 구형 다채널 스피커 어레이 설계)

  • Kang, Dong-Soo;Choi, Jung-Woo;Lee, Jung-Min;Kim, Yang-Hann
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.214-224
    • /
    • 2012
  • The objective of this paper is to design multichannel spherical loudspeaker array by considering various positioning methods such as Gaussian grid, Lebedev grid and packing method. For the spatial sound manipulation, which is to make desired sound field by controling multiple sound sources, the Kirchhoff- Helmholtz integral states that sound fields can be reproduced in terms of infinite control sources on the integral surface. But since we cannot control infinite number of sources for the implementation, we have to allocate finite number of sound sources which can approximately act as infinite number of sources. To manipulate sound field inside of a sphere (which is typical example of three dimensional array) by controlling sound sources on the surface, three methods of allocating sound sources, which are Gaussian grid, Lebedev grid and packing method, are reviewed. For each geometry, the performances of manipulation rendered by time-reversal operator and higher-order ambisonics are compared.

Development and Embodiment of Automatic Location Tracing Service for Rescue Requester

  • Kim, Sun-Hyo;Kim, Jung-Hun;Kim, Hee-Sun;Yoon, Sung-wook
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.11-16
    • /
    • 2021
  • This study developed a design to estimate the location of rescue demander using the sound system at disaster site, in the conditions of indoor positioning cannot be performed properly. It is a location tracing system through smart phone application. It generates sound wave information of rescuer at the rescue site, and it can be used as assistant means for indoor location tracing at the disaster site using sound wave receiving measurement technology.