• Title/Summary/Keyword: Sound Spectrum

Search Result 305, Processing Time 0.023 seconds

Variations in the perception of lexical pitch accents and the correlations with individuals' autistic traits

  • Lee, Hyunjung
    • Phonetics and Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.53-59
    • /
    • 2017
  • The present study examined if individual listeners' perceptual variations were associated with their cognitive characteristics indexed by the Autistic Spectrum Quotient (AQ). This study first investigated the perception of the lexical pitch accent contrast in the Kyungsang Korean currently undergoing a sound change, and then tested if listeners' perceptual variations were correlated with their AQ scores. Eighteen Kyungsang listeners in their 20s participated in the perception experiment where they identified two contrastive accent words for auditory stimuli systematically varying F0 scaling and timing properties; the participants then completed the AQ questionnaire. In the results, the acoustic parameters reporting reduced phonetic differences across accent contrasts for younger Kyungsang generation played a reliable role in perceiving the HH word from HL, suggesting the discrepancy between the perception and the production in the context of sound change. This study also observed that individuals' perceptual variations were negatively correlated with their AQ sub scores. The present findings suggested that the sound change might appear differently between production and perception with a different time course, and deviant percepts could be explained by individuals' cognitive measure.

An experimental study for noise reduction of the cross-flow fan of the room air-conditioners (에어컨용 직교류홴의 저소음화를 위한 실험적 연구)

  • 구형모
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.871-879
    • /
    • 1999
  • Present study explains some experimental results on the aerodynamic noise of the cross-flow fan usually installed in the indoor unit of the room air-conditioners and provides a simple reduction method of radiating sound to decrease the total noise level. The spectrums of the noise of the cross-flow fan were analyzed by the spectral decomposition method to characterize the generated sound. The unsteady fluctuating flow field was also measured using the I-type hot-wire probe. Comparing the spectral characteristics of the sound and the flow velocity, a useful noise reduction method was proposed which bounds the region with a fence where the flow fluctuations were noticeably changed in the same fashion as the source spectral distribution functions vary. To validate the proposed method for reducing noise generated by the cross-flow fan, the sound pressure levels of the cross-flow fan system were compared of the experimental rig with and without the bounding fence for various flow rates.

  • PDF

Watermarking System That Inserts Copyright Holder′s Logo (저작권자의 로고를 워터 마킹하는 장치)

  • 남상엽;이천우;김형배;이상원;박인정
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1487-1490
    • /
    • 2003
  • This paper shows the watermarking system that inserts copyright holder's logo in music file. In other words, a sound file is able to have an image information like a logo or letters. The watermarking system converts a sound file into an image file using spectrogram. In the spectrogram domain, a logo is inserted using spread spectrum. The proposed technique shows that the verification of copyright is better than the method using PN-Sequence.

  • PDF

Consideration on Rating Method for Heavy Impact Sound Taking Account of the Characteristics of Floor Vibration and Impact Sources (바닥 진동 거동 및 충격원 특성을 고려한 바닥 중량 충격음 평가방법 고찰)

  • Lee, Min-Jung;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.69-79
    • /
    • 2017
  • The purpose of this study is to reconsider the rating method for the floor impact sound insulation performance in current criterion. Although there are some arguments about proper standard heavy impact source with reproducibility of actual impact source in residence building, bang machine is adopted as the only standard heavy impact source in domestic criterion. To inspect the rating methods of evaluation criteria, this study conducted vibration test for both of standard heavy impact sources and actual impact sources. Using the test results, the floor impact sound insulation performance levels were assessed by each of several criteria. In addition, low frequency noise beyond current criteria was evaluated. Consequently, the floor impact sound levels have different performance levels according to adopted criteria, and measured floor impact sounds are bound to annoy the neighbors in the low frequency range. Current criteria does not consider the spectrum characteristics of floor impact sound according to impact sources and low frequency noise. This may cause the difference between the floor impact sound insulation performance level and human perception. Thus current criterion needs to be complemented to reflect the spectrum characteristics of floor impact sound levels according to impact sources and sound pressure levels in low frequency range.

Long Term Average Spectrum Characteristics of Head and Chest Register Sounds of Western Operatic Singers : Extended Study (성악다들의 목소리에 대한 Long Term Average Spectrum 분석 -$2^{nd}$ Singer's Formant의 존재 가능성에 대하여-)

  • Ban, Jae-Ho;Kwon, Young-Kyung;Jin, Sung-Min
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2004
  • Background and Objectives : It has been shown that the epilaryngeal tube in the human airway is responsible for vocal ring, or the singer's formant. In previous study, authors showed that in trained tenors, besides the conventional singer's formant in the region of ,5500Hz, another energy peak was observed in the region of 8,000Hz. This peak was interpreted as the second resonance of the epilarynx tube. Singers in other voice categories who produce vocal ring are assumed to have the same peak, but no measurements have as yet been made. Materials and Methods : Fifteen tenors, fourteen baritones, seven sopranos and five mezzo sopranos attending the music college, department of vocal music who could reliably produce the head and chest registers were chosen for this study. Each subject was asked to produce an/ah/sound for at least three seconds for the head register sound(tenors ; G4, barions ; E4 sopranos ; F5 and mezzosopranos ; C5) and for the chest register sound (tenors ; C3, baritones ; D3, sopranos ; D4 and Mezzosoprano ; A3). The sound data was analyzed using the Fast Fourier Transform (FFT)-based power spectrum, Long term average(LTA) power spectrum using the FFT algorithm of the Computerized Speech Lab (CSL, Kay elemetrics, Model 4300B, USA). Statistical analysis was performed using the Mann-Whitney test of the Statistical Package for Social sciences(SPSS). Results : For head register sounds, a significant increase was seen in the 2,200-3,400Hz region(p<0.05) and the Similar to the head register sounds, there was a significant increase in energy in the four trained singer group compared with the untrained group in the 2,200-3,100Hz region(p<0.05), the 7,800-8,400Hz region(p<0.05) for the chest register sounds. Conclusions : When good vocal production was made for the head and chest registers, an energy peak was observed near 2,500Hz, a frequency already known as the "singer's formant', in all subjects in the study group. Another region of increased energy was observed around 8,000Hz that had not been noticed previously. The authors believe this region to be the second singer's formant.

  • PDF

Improvement of front-back sound localization characteristics in headphone-based 3D sound generation (헤드폰 기반의 입체음향 생성에서 앞/뒤 음상정위 특성 개선)

  • 김경훈;김시호;배건성;최송인;박만호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1142-1148
    • /
    • 2004
  • A binaural filtering method using HRTF DB is generally used to make the headphone-based 3D sound. But it can make some confusion between front and back directions or between up and down directions due to the non-individual HRTF depending on each listener. To reduce the confusion of sound image localization, we propose a new method to boost the spectral cue by modifying HRTF spectra with spectrum difference between front and back directions. Informal listening tests show that the proposed method improves the front-back sound localization characteristics much better than the conventional methods

The Analysis of Acoustic Emission Spectra in a 36 kHz Sonoreactor (36kHz 초음파 반응기에서의 원주파수 및 파생주파수의 음압 분포 분석)

  • Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.128-134
    • /
    • 2016
  • Acoustic emission spectra was analyzed to investigate the distribution of sound pressure in a 36 kHz sonoreactor. The sound pressure of fundamental frequency (f: 36 kHz), harmonics (2f: 72 kHz, 3f: 108 kHz, 4f: 144 kHz, 5f: 180 kHz, 6f: 216 kHz), and subharmonics (1.5f: 54 kHz, 2.5f: 90 kHz, 3.5f: 126 kHz, 4.5f: 162 kHz, 5.5f: 198 kHz, 6.5f; 234 kHz) was measured at every 5 cm from the ultrasonic transducer using a hydrophone and a spectrum analyzer. It was revealed that the input power of ultrasound, the application of mechanical mixing, and the concentration of SDS affected the sound pressure distributions of the fundamental frequency and total detected frequencies frequencies significantly. Moreover a linear relationship was found between the average total sound pressure and the degree of sonochemical oxidation while there was no significant linear relationship between the average sound pressure of fundamental frequency and the degree of sonochemical oxidation.

Sound Pressure Sensitivity Variation of the Hollow Cylinder Type Sagnac Fiber Optic Sensor According to the Mandrel Install Direction and Its Material (Sagnac형 광섬유 센서를 이용한 중공 원통형 맨드릴의 재료 및 설치 방향에 따른 음압 감지 변화 연구)

  • Lee, Jong-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.626-633
    • /
    • 2012
  • In this paper, sound pressure sensitivity of the fiber optic acoustic sensor according to sensor direction and mandrel material were investigated experimentally. Three different directions were selected as stand, lay, and hole. Hollow cylinder type mandrel dimension is 30 mm in outer diameter, 45 mm in length, and 2 mm in thickness, and about 50 m optical fibers were wounded on the surface of the mandrel. Non-directional sound speaker was used as a sound source. Sagnac interferometer and single mode fiber, a laser with 1,550 nm in wavelength, $2{\times}2$ coupler were used. Based on the experimental results, lay direction's sensitivity is the highest in the frequency range of 2 kHz~4 kHz. 'PTFE+carbon' material is more sensitive than PTFE in the frequency range of 5 kHz~20 kHz. Sound pressure detection sensitivity depends on the mandrel direction and material under certain frequency.

A cable tension identification technology using percussion sound

  • Wang, Guowei;Lu, Wensheng;Yuan, Cheng;Kong, Qingzhao
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.475-484
    • /
    • 2022
  • The loss of cable tension for civil infrastructure reduces structural bearing capacity and causes harmful deformation of structures. Currently, most of the structural health monitoring (SHM) approaches for cables rely on contact transducers. This paper proposes a cable tension identification technology using percussion sound, which provides a fast determination of steel cable tension without physical contact between cables and sensors. Notably, inspired by the concept of tensioning strings for piano tuning, this proposed technology predicts cable tension value by deep learning assisted classification of "percussion" sound from tapping a steel cable. To simulate the non-linear mapping of human ears to sound and to better quantify the minor changes in the high-frequency bands of the sound spectrum generated by percussions, Mel-frequency cepstral coefficients (MFCCs) were extracted as acoustic features to train the deep learning network. A convolutional neural network (CNN) with four convolutional layers and two global pooling layers was employed to identify the cable tension in a certain designed range. Moreover, theoretical and finite element methods (FEM) were conducted to prove the feasibility of the proposed technology. Finally, the identification performance of the proposed technology was experimentally investigated. Overall, results show that the proposed percussion-based technology has great potentials for estimating cable tension for in-situ structural safety assessment.

Positional Estimation of Underwater Sound Source Using Nearfield Acoustic Holography (근접장 음향 홀로그래피에 의한 수중 음원의 위치 추정)

  • Yoon Jong-Rak;Kim Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.166-170
    • /
    • 2005
  • This paper describes the experimental study for the position estimation method of underwater sound source using the Nearfield Acoustic Holography. The result confirms that it can be used in the identification of underwater noise sources. The sound sources in the experimental work consists of 2 spherical projectors and the near-Held sound pressure is measured in the hologram plane. From the cross-power spectra of the measured data, the complex sound pressures on the hologram plane is derived and its spatial transformation gives sound fields in a source region. The obtained sound fields in a source region showed that the position of each sound source and their relative source strength are exactly estimated. In conclusion, this technique can be applied for estimation of each source position and its relative strength contribution for the underwater multiple sound sources.