• Title/Summary/Keyword: Sound Spectrum

Search Result 305, Processing Time 0.026 seconds

On-line Detection of Cracks in Eggshell (계란 크랙의 온라인 검출)

  • 최완규;조한근;백진하;장영창;연광석;조성찬
    • Journal of Biosystems Engineering
    • /
    • v.24 no.3
    • /
    • pp.253-258
    • /
    • 1999
  • This study was conducted to develop an automatic egg inspection system for detecting creaked eggs based on acoustic impulse response. This system includes a sound generator, a sound sensor with signal conditioner, and a computer. The sound generator that hit the sharp of the dull edges of an egg was constructed with a ceramic ball pendulum attached to a rotary type solenoid. The signal conditioner included a pre-amplifier and a digital signal processing (DSP) board. The parameters for distinguishing cracked and normal eggs were the area, the geometric centroid and the resonance frequency of power spectrum of the acoustic signal generated. An algorithm for on-line detection of the continuous transferring eggs was developed. The performance tests resulted with 91% success rate to separate cracked and normal eggs at the rate of 1 second per an egg.

  • PDF

NUMERICAL PREDICTION OF THE CROSS-FLOW FAN PERFORMANCE AND NOISE CHARACTERISTICS BY UNSTRUCTURED FLOW SOLVER ALGORITHM (비정렬 격자기법을 이용한 횡류팬(Cross-Flow Fan)의 비정상 유동해석)

  • Cho Yong;Moon Young J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.36-41
    • /
    • 1998
  • The cross-flow fan performance and its sound noise characteristics are predicted by computational methods. The unsteady incompressible Navier-Stokes equations in moving coordinates are solved by a SMAC method on unstructured triangular meshes, using a sliding mesh technique at the interface between the domain rotating with blades and the rest stationary part. The computationally predicted fan performance was favorably compared with experiment, and some numerical aspects of simulating the cross-flow fan are discussed. With the computed unsteady flow field, aeroacoustic sound noise of the fan is predicted by the Lighthill-Curie equation. The unsteady surface pressure fluctuations on stabilizer enables a prediction of BPF noise of the uniform pitch blade fan quite accurately. The aeroacoustic sound noise characteristics of both uniform and random pitch blade fans are also examined by SPL spectrum analysis.

  • PDF

Noise Reduction of Reciprocal Compressor by Design Modification of Hermitic Shell (냉장고의 소음 저감을 위한 컴프레서 쉘 최적설계)

  • 박종찬;왕세명;박승일;이성태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.785-789
    • /
    • 2002
  • Sound measurement experiments and Finite Element analysis are carried out to understand the characteristics of the noise propagation and structure of the compressor in this research. Noises generated from the compressor on various conditions are measured to classify the transmission path of the noise propagation with respect to the sources. The experiment results show that noises attributed to the shell bending resonant modes accounts fer a major portion of the spectra and that damping spring of the discharge pipe have a damping effect on some frequency range. Constructions of the FE model show that the curvature of the upper shell is very important for the resonance of the upper shell. And, present upper shell has a difficult shape to be manufactured. And, in this research, shape optimization is conducted to increase the strength of the shell for the reduction of the noise. Sound spectrum of noise from the modified compressor verified the sound reduction.

  • PDF

A Study on an Acoustical Model for Gas Leak Detection in a Pipeline (배관계의 가스누설탐지를 위한 음향모델 연구)

  • Yang, Yoon-Sang;Lee, Dong-Hoon;Koh, Jae-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • An acoustical model for detecting the leak location in a buried gas pipeline has been developed. This model is divided into an experimental model for sound diagnosis, and a theoretical model for sound prediction, which is based on the transfer matrix method, representing the sound pressure and the volume velocity as state variables. The power spectrum is measured by attaching only one microphone to the closed end pipe. It has been shown that the response magnitude of acoustic pressure signals calculated by the acoustical model depends upon the thickness and diameter of a pinhole. The validity for the acoustical model has been verified through a comparison between the measured and calculated results.

Acoustic Power Estimation of Highway Traffic Noise (고속도로 교통소음의 음향파워 평가)

  • 오정한;조대승;장태순;강희만;이용은;박형식;권성용;이성환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1273-1279
    • /
    • 2001
  • Precise highway traffic noise simulation and reduction require the accurate data for sound power levels emitted by vehicles, varied to road surface, traffic speed, vehicle types and makers, different from countries to countries. In this study, we have elaboratively measured domestic highway traffic noise and parameters affecting noise levels at the nearside carriageway edge. From numerical simulation using the measured results for highway traffic noise, we propose not only two correction factors to enhance the accuracy of highway traffic sound power estimation using ASJ Model-1998 but also its typical power spectrum according to road surface type. The measured and predicted highway traffic noise levels using the proposed sound power shows little difference within 1 dB.

  • PDF

Emotion Recognition Method Using Heart-Respiration Connectivity (심장과 호흡의 연결성을 이용한 감성인식 방법)

  • Lee, Dong Won;Park, Sangin;Whang, Mincheol
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.61-70
    • /
    • 2017
  • Physiological responses have been measured to recognize emotion. Although physiological responses have been interrelated between organs, their connectivities have been less considered for emotion recognizing. The connectivities have been assumed to enhance emotion recognition. Specially, autonomic nervous system is physiologically modulated by the interrelated functioning. Therefore, this study has been tried to analyze connectivities between heart and respiration and to find the significantly connected variables for emotion recognition. The eighteen subjects(10 male, age $24.72{\pm}2.47$) participated in the experiment. The participants were asked to listen to predetermined sound stimuli (arousal, relaxation, negative, positive) for evoking emotion. The bio-signals of heart and respiration were measured according to sound stimuli. HRV (heart rate variability) and BRV (breathing rate variability) spectrum were obtained from spectrum analysis of ECG (electrocardiogram) and RSP (respiration). The synchronization of HRV and BRV spectrum was analyzed according to each emotion. Statistical significance of relationship between them was tested by one-way ANOVA. There were significant relation of synchronization between HRV and BRV spectrum (synchronization of HF: F(3, 68) = 3.605, p = 0.018, ${\eta}^2_p=0.1372$, synchronization of LF: F(3, 68) = 5.075, p = 0.003, ${\eta}^2_p=0.1823$). HF difference of synchronization between ECG and RSP has been able to classify arousal from relaxation (p = 0.008, d = 1.4274) and LF's has negative from positive (p = 0.002, d = 1.7377). Therefore, it was confirmed that the heart and respiration to recognize the dimensional emotion by connectivity.

Psychological and Physiological Responses to the Rustling Sounds of Korean Traditional Silk Fabrics

  • Cho, Soo-Min;Yi, Eun-Jou;Cho, Gil-Soo
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.450-456
    • /
    • 2006
  • The objectives of this study were to investigate physiological and psychological responses to the rustling sound of Korean traditional silk fabrics and to figure out objective measurements such as sound parameters and mechanical properties determining the human responses. Five different traditional silk fabrics were selected by cluster analysis and their sound characteristics were observed in terms of FFT spectra and some calculated sound parameters including level pressure of total sound (LPT), Zwicker's psychoacoustic parameters - loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z), and sound color factors such as ${\Delta}L\;and\;{\Delta}f$. As physiological signals, the ratio of low frequency to high frequency (LF/HF) from the power spectrum of heart rate variability, pulse volume (PV), heart rate (HR), and skin conductance level (SCL) evoked by the fabric sounds were measured from thirty participants. Also, seven aspects of psychological state including softness, loudness, sharpness, roughness, clearness, highness, and pleasantness were evaluated when each sound was presented. The traditional silk fabric sounds were likely to be felt as soft and pleasant rather than clear and high, which seemed to evoke less change of both LF/HF and SCL indicating a negative sensation than other fabrics previously reported. As fluctuation strength(Z) were higher and bending rigidity (B) values lower, the fabrics tended to be perceived as sounding softer, which resulted in increase of PV changes. The higher LPT was concerned with higher rating for subjective loudness so that HR was more increased. Also, compression linearity (LC) affected subjective pleasantness positively, which caused less changes of HR. Therefore, we concluded that such objective measurements as LPT, fluctuation strength(Z), bending rigidity (B), and compression linearity (LC) were significant factors affecting physiological and psychological responses to the sounds of Korean traditional silk fabrics.

Characteristics of Rustling Sound of Laminated Fabric Utilizing Nano-web (나노웹을 이용한 라미네이트소재의 마찰음 특성)

  • Jeong, Tae-Young;Lee, Eu-Gene;Lee, Seung-Sin;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.15 no.4
    • /
    • pp.620-629
    • /
    • 2013
  • This study examines the rustling sound characteristics of electrospun nanofiber web laminates according to layer structures. This study assesses mechanical properties and frictional sounds (such as SPL); in addition, Zwicker's psychoacoustic parameters (such as Loudness (Z), Sharpness (Z), Roughness (Z), and Fluctuation strength (Z)) were calculated using the Sound Quality Program (ver.3.2, B&K, Denmark). The result determined how to control these characteristics and minimize rustling sounds. A total of 3 specimens' frictional sound (generated at 0.63 m/s) was recorded using a Simulator for Frictional Sound of Fabrics (Korea Patent No. 10-2008-0105524) and SPLs were analyzed with a Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured with a KES-FB system. The SPL value of the sound spectrum showed 6.84~58.47dB at 0~17,500Hz. The SPL value was 61.2dB for the 2-layer PU nanofiber web laminates layered on densely woven PET(C1) and was the highest at 65.1dB for the 3-layer PU nanofiber web laminates (C3). Based on SPSS 18.0, it was shown that there is a correlation between mechanical properties and psychoacoustic characteristics. Tensile properties (LT), weight (T), and bending properties (2HB) showed a high correlation with psychoacoustic characteristics. Tensile linearity (LT) with Loudness (Z) showed a negative correlation coefficient; however, weight (T) with Sharpness (Z) and Roughness (Z), and bending hysteresis (2HB) with Roughness (Z) indicated positive correlation coefficients, respectively.

Improvement of 3D Sound Using Psychoacoustic Characteristics (인간의 청각 특성을 이용한 입체음향의 방향감 개선)

  • Koo, Kyo-Sik;Cha, Hyung-Tai
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.255-264
    • /
    • 2011
  • The Head Related Transfer Function (HRTF) means a process related to acoustic transmission from 3d space to the listener's ear. In other words, it contains the information that human can perceive locations of sound sources. So, we make virtual 3d sound using HRTF, despite it doesn't actually exist. But, it can deteriorate some three-dimensional effect by the confusion between front and back directions due to the non-individual HRTF depending on each listener. In this paper, we proposed the new algorithm to reduce the confusion of sound image localization using human's acoustic characteristics. The frequency spectrum and global masking threshold of 3d sounds using HRTF are used to calculate the psychoacoustical differences among each directions. And perceptible cues in each critical band are boosted to create effective 3d sound. As a result, we can make the improved 3d sound, and the performances are much better than conventional methods.