• Title/Summary/Keyword: Sound Radiation

Search Result 297, Processing Time 0.021 seconds

A Study on the Characteristic of Noise and Vibration in 3-Phase Induction Motor for the Forklift (전동 지게차용 3 상 유도 모터의 소음 진동 특성에 대한 연구)

  • Kim, Woo-Hyung;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.764-769
    • /
    • 2007
  • This paper is studied the noise and vibration characteristics analysis of the three-phase induction AC motor of the electrical forklift. And we suggest the method which the reduction orders the noise and vibration to be the mechanical. In other to investigate these characteristics, we considered the mechanical characteristics, the electromagnetic effects, and these interactions. In mechanical, we studied the characteristic of the stator, the bearing supported condition of the rotor, and the sound radiation. In electronically, this paper is considered the harmonic effect which is related the magnetic motive force (mmf) with respect to the characteristic of the slot number of the rotor and the stator and the pole number of the motor. Finally we investigated the overall noise and vibration of the induction motor by relations between the electronically harmonic and the mechanical resonance of the stator. By the analysis of the generally three-phase induction motor, we suggest the design methodology to low noise and vibration.

  • PDF

Structural Modification for Noise Reduction of the Blower Case in a Fuel Cell Passenger Car Based on the CAE Technology (승용연료전지 자동차용 블로워 케이스의 방사소음 저감을 위한 CAE 이용 구조변경에 관한 연구)

  • Song, Min-Keun;Lee, Sang-Kwon;Seo, Sang-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.972-981
    • /
    • 2008
  • The blower which is installed in a FCEV(fuel cell electric vehicle) may cause noise due to misalignment and unbalance of mechanical components that rotate at high speed. One of the key points in efforts to minimize the noise radiation from a blower is the knowledge of the main radiating component and the relation between the surface vibration of a blower and the sound pressure. In this research, the blower model is developed based on FEM(finite element method). FE(finite element) model is reliable by correlation of frequencies and MAC(modal assurance criterion) values between EMA(experimental modal analysis) and FEA(finite element analysis). This model is applied to predict the vibration of a blower by using inverse force identification method and predict the radiating noise by using BEM(boundary element method). Comparing the frequencies of resonance and those mode shapes between EMA and FEA, a structural modification of the FE model is evaluated for reducing the parameters of the blower noise.

Multichannel Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 다채널 능동제어)

  • Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1252-1261
    • /
    • 2006
  • This paper summarizes theoretical work on the multichannel decentralized feedback control of sound radiation from aircraft trim panels using piezoceramic actuators. The aircraft trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. It is motivated by the localization of reduction in vibration of single channel active trim panels. 12-channel decentralized feedback control systems are investigated in terms of the reduction of noise and vibration for three configurations of sensor actuator pairs. Local coupling of the closely-spaced sensor and actuator pairs was modeled using single degree of freedom systems. The multichannel control system is characterized using the state-space model. For the stability point of view, the relative stability or robustness is evaluated by comparing the real part of eigenvalues of the system matrix for the three configurations. The control performance is also evaluated and compared for the three configurations. It is found that the multichannel system can lead to the globalization of the reduction in vibration and radiated noise. It does not appear to yield a significant improvement in the vibration because of decreased gain margin. However, the reduction in the radiated noise is remarkably improved due to the variation of the vibration pattern with the actuation configurations.

Effect of Railway Noise Barrier Shape on Solar Radiation Energy Absorption (철도 방음벽의 형상에 따른 태양복사 에너지 흡수 특성 연구)

  • Jeong, Chan Ho;Lee, Jin Woon;Jang, Yong-Jun;Kim, Jooheon;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.209-214
    • /
    • 2013
  • The present study aims to determine the optimized shape for the maximum electric energy production of building integrated photovoltaic system (BIPV) noise barrier through numerical analysis. The shape of BIPV noise barrier is one of the important factors in determining angle difference between direction vector of the sun and normal vector of the sound barrier surface. This study simulated numerically the flow and thermal fields for different angles in the range from $90^{\circ}$ to $180^{\circ}$, and from the results, the amount of isolation onto noise barrier surface was estimated along the angle between ground and top side of noise barrier. The commercial CFD code (Fluent V. 13.0) was used for calculation. It was found that the maximum amount of insolation per unit area was 19.6 MJ for $105^{\circ}$ case during a day in summer and was estimated 12.4 MJ in $150^{\circ}$ case during a day in winter. The results of the summer and winter cases showed the different tendency and this result would be useful in determining the appropriate shape of noise barrier which can be mounted under various circumstances.

A Numerical Study on the Generation of Aeroacoustic Sound from Sirocco Fans (시로코 홴의 공력소음 발생에 관한 수치적 연구)

  • 전완호;백승조;김창준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.42-47
    • /
    • 2002
  • Sirocco fans are widely used in HVAC and air conditioning systems, and the noise generated by these machines causes one of the most serious problems. In general, the sirocco fan noise is often dominated by tones at BPF(blade passage frequency) and broadband noise. However, only a few researches have been carried out on predicting the aeroacoustic noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a sirocco fan. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson\`s method is used to predict the acoustic source. Reasonable results are obtained not only fur the tonal noise but also far the amplitudes of the broadband noise. Acoustic pressure is proportional to (Ω)2.3, which is the similar value with the measured data.

Clinical and Pathological Analysis of Mediastinal Tumors and Cysts (종격동 종양과 낭종의 임상 및 조직학적 고찰)

  • Kim, Jae-Ryeon;Choe, Hyeong-Ho
    • Journal of Chest Surgery
    • /
    • v.28 no.10
    • /
    • pp.917-923
    • /
    • 1995
  • For the purpose of analysis of clinical and pathological characteristics in mediastinal tumors and cysts, 82 patients with mediastinal tumors and cysts treated in the department of thoracic and cardiovascular surgery in Chosun University Hospital during the period from January 1978 to December 1994 were reviewed. There were 49 male and 33 female patients in the study. Age ranges from 10 months to 84 years, with the mean 37.2 years. Frequently encountered symptoms and signs were dyspnea[40.2% , abnormal breathing sound[37.8% , chest pain[35.7% , cough[26.8% , and 18.2% of patients were asymptomatic. The most frequent tumor was anterosuperior mediastinum [59.8% followed by middle[24.4% and posterior mediastinum[15.8% . The malignant tumors were found in 35 cases[42.7% . Successful removal of the mass was possible in all the benign mediastinal masses[57.3% . But in the malignant cases, the surgical removal was possible in 18 cases and other inoperable cases were treated by radiation and chemotherapy. The postoperative complications occurred in 9 cases. Usual complications were bleeding[4 cases , wound infection[3 cases , pneumothorax[1 case and vocal cord paralysis[1 case . In the pathologic viewpoint, teratodermoid tumors[22.0% were the most frequent tumor followed by thymomas[19.5 , benign cysts[15.8% , lymphomas[13.4% and neurogenic tumors[8.5% .

  • PDF

Development of a Noise Map in Neighboring Areas Around Korean Train Express Line and Analysis of the Related High Speed Railway Noise Influence (한국형 고속철도 노선 주변 지역의 소음 지도 작성과 소음 영향 분석)

  • Lee, Jin-Young;Kil, Hyun-Gwon;Lee, Chan;Kim, Jin-Tae
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.443-453
    • /
    • 2011
  • The purpose of present study is to develop a noise map around Korean Train Express (KTX) line. It is also to evaluate the high speed railway noise influence in neighboring areas around KTX. In order to develop the noise map, noise source modeling and 3-D noise radiation simulation have been performed by means of SoundPLAN program. The result of the noise map has been verified in comparison with the measured noise level. Noise measurements have been performed at 15 locations around KTX line. At each locations, 6 microphones were located 1.5m and 3m above the ground at each of 25m, 50m and 75 m distances from a center of the KTX track. The noise map showed clearly the high speed railway noise influence in neighboring areas around KTX line. The present study has also showed the noise could be reduced by using noise barriers constructed at severely noise-exposed locations.

Nasal Place Detection with Acoustic Phonetic Parameters (음향음성학 파라미터를 사용한 비음 위치 검출)

  • Lee, Suk-Myung;Choi, Jeung-Yoon;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.353-358
    • /
    • 2012
  • This paper describes acoustic phonetic parameters for detecting nasal place in a knowledge-based speech recognition system. Initial acoustic phonetic parameters are selected by studying nasal production mechanisms which are radiation of the sound through the nasal cavity. Nasals are produced with differing articulatory configuration which can be classified by measuring acoustic phonetic parameters such as band energy ratio, band energy differences, formants and formant differences. These acoustic phonetic parameters were tested in a classification experiment among labial nasal, alveolar nasal and velar nasal. An overall classification rate of 57.5% is obtained using the proposed acoustic phonetic parameters on the TIMIT database.

Sizing Design Sensitivity Analysis and Optimization of Radiated Noise from a Thin-body (박판 구조물의 방사 소음에 대한 크기설계 민감도 해석 및 최적 설계)

  • 이제원;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1038-1043
    • /
    • 2003
  • There are many industrial applications including thin-body structures such as fins. For the numerical modeling of radiation of sound from thin bodies, the conventional boundary element method (BEM) using the Helmholtz integral equation fails to yield a reliable solution. Therefore, many researchers have tried to solve the thin-body acoustic problems. In the area of the design sensitivity analysis (DSA) and optimization methods, however, there has been just a few study reported. Especially fur the thin-body acoustics, however, no further study in the DSA and optimization fields has been reported. In this research, the normal derivative integral equation is adopted as an analysis formulation in the thin-body acoustics, and then used for the sizing DSA and optimization. Since the gradient-based method is used for the optimization, it is important to have accurate gradients (design sensitivities) of the objective function and constraints with respect to the design variables. The DSA formulations are derived through chain-ruled derivatives using the finite element method (FEM) and BEM by using the direct differentiation and continuum variation concepts. The proposed approaches are implemented and validated using a numerical example.

  • PDF

An experimental study on the durability evaluation of concrete applied functional nano composite inorganic activated carbon based coatings (기능성 나노복합 무기질 활성탄계 표면 처리제를 적용한 콘크리트의 내구성능 평가에 관한 실험적 연구)

  • Yang, Gi-Young;Jang, Seog-Jae;Baek, Jong-Myeong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1385-1390
    • /
    • 2006
  • Concrete structure can be deteriorated by ingress of moisture and aggressive agents. To maintain the sound performance of concrete structure during the service life, it needs to protect concrete from ingress of moisture and aggressive agents before arising deterioration of concrete. Protection of concrete is possible by surface treatment. In this study, durability of the functional nano composite inorganic activated carbon based coatings which can provide a barrier against the ingress of moisture or aggressive ions to concrete is discussed. For the durability evaluation of the coatings, fine void structure evaluation test, chloride penetration acceleration test, accelerated carbonation test, freezing and thawing test, and the accelerated test of chemical erosion are conducted. As the result of this study, the functional nano composite inorganic activated carbon based coatings which became one formed complex compound with adsorption and porosity on concrete surface, had an effect on the function of far infrared radiation, antimicrobial action, air cleaning, airing assurance, and the interception of moisture of deterioration factor, chloride ion, carbon dioxide, sulfate, and so on.

  • PDF