• Title/Summary/Keyword: Sound Pressure Characteristics

Search Result 372, Processing Time 0.025 seconds

Design of Visualization System for Stress Evaluation of Elastic Wave (탄성파의 응력평가를 위한 가시화시스템 설계)

  • Nam, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.576-582
    • /
    • 2008
  • This paper describes a synthesized photoelastic method developed for the visualization and evaluation of sound pressure distribution of elastic wave in a solid. The visualization of wave stress field is achieved by synthesizing two photoelastic pictures, in which the direction of the principal axis of linear polariscopes differs by $45^{\circ}$. From the analysis of the wave stress distribution using this method, it is possible to evaluate the characteristics of elastic waves in a solid, such as the intensity of stress, directivity and resolution characteristics of the wave emitted from a commercial probe, and characteristics of scattering from various types of defects.

Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames (난류 제트확산화염의 연소소음 특성에 관한 실험연구)

  • 김호석;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.

An Aerodynamic and Acoustic Analysis of the Breathy Voice of Thyroidectomy Patients (갑상선 수술 후 성대마비 환자의 기식 음성에 대한 공기역학적 및 음향적 분석)

  • Kang, Young-Ae;Yoon, Kyu-Chul;Kim, Jae-Ock
    • Phonetics and Speech Sciences
    • /
    • v.4 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • Thyroidectomy patients may have vocal paralysis or paresis, resulting in a breathy voice. The aim of this study was to investigate the aerodynamic and acoustic characteristics of a breathy voice in thyroidectomy patients. Thirty-five subjects who have vocal paralysis after thyroidectomy participated in this study. According to perceptual judgements by three speech pathologists and one phonetic scholar, subjects were divided into two groups: breathy voice group (n = 21) and non-breathy voice group (n = 14). Aerodynamic analysis was conducted by three tasks (Voicing Efficiency, Maximum Sustained Phonation, Vital Capacity) and acoustic analysis was measured during Maximum Sustained Phonation task. The breathy voice group had significantly higher subglottal pressure and more pathological voice characteristics than the non breathy voice group. Showing 94.1% classification accuracy in result logistic regression of aerodynamic analysis, the predictor parameters for breathiness were maximum sound pressure level, sound pressure level range, phonation time of Maximum Sustained Phonation task and Pitch range, peak air pressure, and mean peak air pressure of Voicing Efficiency task. Classification accuracy of acoustic logistic regression was 88.6%, and five frequency perturbation parameters were shown as predictors. Vocal paralysis creates air turbulence at the glottis. It fluctuates frequency-related parameters and increases aspiration in high frequency areas. These changes determine perceptual breathiness.

Prediction of Frequency Modulation of BPF Tonal Noise for Random Pitch Cross-Flow Fans by Unsteady Viscous Flow Computations (비정상 점성유동 해석에 의한 부등피치 횡류홴의 BPF 순음 주파수 변조 특성 예측)

  • Cho, Yong;Moon, Young J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.286-293
    • /
    • 2003
  • The unsteady flow characteristics and associated blade tonal noise of a cross-flow fan are predicted by computational methods. The incompressible Navier-Stokes equations are time-accurately solved for obtaining the pressure fluctuations between the rotating blades and the stabilizer. and the sound pressure is predicted using Curie's equation. The discrete noise characteristics of three impellers with a uniform and two random pitch (type-A and -B) blades are compared by their SPL (Sound Pressure Level) spectra. and the frequency modulation characteristics of the BPF (Blade Passing Frequency) noise are discussed. Besides. a mathematical model is proposed for the prediction of discrete blade tonal noise and is validated with available experimental data. The fan performance is also compared with experimental data. indicating that the random pitch effect does not significantly alter the performance characteristics at ${\phi}$ 〉 0.4

Interior Noise Reduction of Enclosure Using Predicted Characteristics of Absorber (흡음재의 음향특성 예측에 의한 밀폐계의 내부 소음저감)

  • Lee Ghi-Youn;Sim Hyoun-Jin;Lee Jung-Yoon;Oh Jae-Eung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.60-66
    • /
    • 2006
  • For the purpose of finding out the sound field characteristics in a rectangular cavity, analytical and experimental studies are performed with white noise input. Two-microphone impedance tube method is used to measure the impedances of foamed aluminum. Foamed aluminum is well known metallic porous material which has excellent properties of light weight and high absorbing performance. And predicted impedances of foamed aluminum are compared with measured impedances. The predicted acoustical parameters are applied to the theoretical analysis to predict sound pressure field in the cavity. The measured sound absorption effects are compared with the predicted values for both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure.

The Design Analysis for the Reduction of Radiated Sound from the Motor-die in Washing Machine (세탁기 모터다이의 방사음 저감을 위한 설계해석)

  • 서대원;홍정혁;오재응
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.371-376
    • /
    • 1999
  • The purpose of this study is to identify the dynamic characteristics of a motor-die in washing machine and provide quantitative design information needed for reduction of radiated sound from the motor-die. To perform the design analysis, dynamic characteristics are identified by motor-die modeling and the availability of model is verified by experimental modal analysis. Numerical approach using MSC/NASTRAN and SYSNOISE predicted sound attenuation effects according to the change of design parameters, such as thickness, concentrated mass and rib. The numerical results due to the rib attachment showed the significant noise attenuation effects over 15 dB in the frequency range of 450∼700 Hz.

  • PDF

The Design Analysis for the Reduction of Radiated Sound from the Motor-die in Washing Machine (세탁기 모터다이의 방사음 저감을 위한 설계해석)

  • Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.23-32
    • /
    • 2000
  • The purpose of this study is to identify the dynamic characteristics of a motor-die in washing machine and provide quantitative design information needed for the reduction of radiated sound from the motor-die. To perform the design analysis, dynamic characteristics are identified by motor-die modeling and the availability of model is verified by experimental modal analysis. Numerical approach using MSC/NASTRAN and SYSNOISE predicted sound attenuation effects according to the change of design parameters, such as thickness, concentrated mass and rib. The numerical results due to the rib attachment showed the significant noise attenuation effects over 15dB in the frequency range of 450-700Hz.

  • PDF

An Experimental Study on the Sound Level Intensity Characteristics for Combustion of Single Droplet Emulsified Fuels (유화단일액적의 연소에 관한 소음 특성 연구)

  • Cho, Seong-Cheol;Oh, Yang-Hwan;Im, Seok-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.492-499
    • /
    • 2014
  • The objectives of this study was to examine experimentally the microexplosion phenomena of single droplet W/O(water-in-oil) type emulsified fuel. Also, measured the combustion characteristics of single droplet emulsified fuel for microexplosion phenomena in atmospheric pressure condition. The larger quantity of adding water makes microexplosion phenomenon with higher intensity of sound level, because larger water droplet has better coalescence for emulsified fuel. The small quantity of adding water makes puffing with lower sound level intensity. In latter period of extinction, large size droplet of the emulsified fuel breaks down rapidly to small size droplet, and microexplosion phenomenon occurs with multi step combustion.

A study on the flow and aeroacoustic characteristics of the sirocco fan of OTR (Over The Range) (후드겸용 전자레인지 시로코홴의 유동 및 소음특성에 관한 연구)

  • Jeon, Wan-Ho;Rew, Ho Seon;Song, Sung-Bae;Shon, Sang-Bun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.17-23
    • /
    • 2004
  • Aeroacoustic characteristics of sirocco fan used in Over-The-Range (OTR) has been analyzed in this paper. A microwave hood combination over the gas range is short for the OTR. The flow phenomena of the double-sided sirocco fan was analyzed numerically and experimentally by using commercial code and three dimensional PIV for flow visualization. Also, microphone array is used in order to understand acoustic characteristics of OTR. Two dimensional unsteady flow and acoustic simulation is tried to qualitatively estimate the effects of tonal noise and broadband noise on the overall sound pressure level. It is found that tonal sound is generated from the strong interaction between the impeller and cutoff while broadband sound is generated from the strong secondary flows along the scroll surface. To reduce the noise level, the V-shape cut-off was applied to improve the sound quality by reducing tonal noise. So the peak noise at BPF (Blade Passing Frequency) was almost reduced. The shape of flow-guide to suppress the secondary flow over the scroll surface was carefully checked. It is found that this affects flow pattern at the fan exit and reduces the broad band noise. Through this numerical and experimental study, the sound pressure level was lowered by 4dBA compared to that of the previous fan at the operating point.

A Numerical Study on the Characteristic of Airflow and Aeroacoustic Noise in DVD Drive (DVD 드라이브 내에서의 유동 및 유동소음 특성에 관한 수치적 연구)

  • Yoo, Seung-Won;Lee, Jong-Soo;Min, Oak-Key;Kim, Soo-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.759-764
    • /
    • 2000
  • The accurate prediction of aeroacoustic analysis is necessary for designers to control and reduce airflow-induced sound pressure levels in high speed rotating DVD drives. This paper focuses on the numerical prediction of airflow-induced sound in DVD drives. Computational fluid dynamics(CFD) is first conducted to evaluate flow field characteristics due to the high-speed disk rotation, and to support the acoustic analysis. The acoustic analogy based on Ffowcs Williams-Hawkings(FW-H) equation is adopted to predict aeroacoustic noise patterns. The integral solution for quadrupole volume source is included to identify the turbulence noise generated inside the DVD tray. The strength of sound pressure level with respect to rotating speed is discussed to meet upfront demand on the high fidelity product development. The present study also focuses on the noise directivity and examines how much the sound noise is sensitive to change in rotating speed. Near-field noise is strongly affected by the flow field characteristic, which is caused by the complex shape of the tray. For a mid-field, the quadrupole noise play as a counterpart of thickness noise or loading noise, so it generates different sound noise patterns compared with those in the near field.

  • PDF