• Title/Summary/Keyword: Sound Level Distribution

Search Result 112, Processing Time 0.027 seconds

Effects of the sound field characteristics of the receiving room on heavy-weight impact sound measurement generated by impact ball (임팩트 볼에 의한 중량충격음 측정에 있어서 수음실 음장특성의 영향)

  • Yoo, Seung-Yup;Lee, Sin-Young;Jeong, Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.622-625
    • /
    • 2006
  • This study is a fundamental investigation for standardization of the heavy-weight floor impact measuring method by the impact ball. The distribution chrematistics of floor impact sound level and reverberation time in a receiving room of the testing building for floor impact sound were measured with variations of number and arrangement of the sound-absorbing materials. Total 8 cases were investigated. The distribution of the floor impact sound level($L_{i,\;Fmax}$) was measured at 30 points with same intervals. The absorption coefficient of the room is 0.10 in case of installation of 6 absorbing materials and 0.02 in case of non-installation. The distribution shape of the impact sound pressure level was similar to the result of the bang machine driving at the measured frequency range. However, the overall reduction of the impact sound level investigated in the 125 to 500 Hz shows that the sound absorption characteristics of the receiving room actually affects the result of the heavy-weight impact measurement.

  • PDF

An Experimental Study on the Prediction of Indoor Sound Level Distribution in Apartment for Exterior Noise (외부소음에 대한 공동주택 실내 소음레벨분포에 관한 실험적 연구)

  • Park, Hyeon-Ku;Kim, Jong-Bin;Kang, Dong-Yong;Jang, Hyun-Choong;Song, Hyuk;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.259-264
    • /
    • 2001
  • It is necessary to predict the sound pressure level(SPL) in rooms before designing an apartment when exterior noises are produced. In order to predict SPL for an apartment that has some specific exterior noises, the following should be known: the characteristics of outdoor noise, sound insulation performance and sound level differences of each room. The purpose of this study is to find out the possibility of predicting sound pressure level of rooms in an apartment by analysing sound level differences among rooms. Sound sources used in this experiment are construction noise, aircraft noise, railroad noise, road traffic noise and white noise as a reference to compare with the previous four. These noises were recorded and reproduced by speaker. As a result, we found that within the sound reduction pattern, the sound difference level appeared uniform depending on the sound insulation characteristics of the windows installed when facing the noise source. When the windows having the same acoustic performance were installed, the SPL in each room resulted in nearly the same values.

  • PDF

Investigation of the heavy-weight floor impact sound field in a testing building with bearing wall structure (벽식구조 표준시험동에서 중량충격음장에 관한 연구)

  • Yoo, Seung-Yup;Lee, Sin-Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.969-973
    • /
    • 2007
  • The heavy-weight floor impact sound field of the receiving room in a testing building with bearing wall structure was investigated using bang machine and impact ball. The sound field was investigated through the impact sound pressure level distribution by the field measurement and computational analysis. Predicted sound field using the computational analysis agree with measurement result in the low frequency band. Result shows that standard deviations of the single number rating value are about 2dB in each impact source. Particularly, impact sound pressure level at 120cm height in 63Hz octave band was 5dB lower than spatial averaging value. It was found that receiving positions in the ministry of construction and transportation notice should be reconsidered.

  • PDF

Comparison of Sound Pressure Level and Speech Intelligibility of Emergency Broadcasting System at T-junction Corridor Space (T자형 복도 공간의 비상 방송용 확성기 배치별 음압 레벨과 음성 명료도 비교)

  • Jeong, Jeong-Ho;Lee, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.105-112
    • /
    • 2019
  • In this study, an architectural acoustics simulation was conducted to examine the clear and uniform transmission of emergency broadcasting sound in a T junction corridor space. The sound absorption performance of the corridor space and the location and spacing of the loudspeaker for emergency broadcasting were varied. The distribution of the sound pressure level and the distribution of sound transmission indices (STI, RASTI) were compared. The simulation showed that the loudspeaker for emergency broadcasting should be installed approximately 10 m from the center of the T junction corridor connection for clear voice transmission. Narrowing the 25 m installation interval of the NFSC shows that an even clearer and sufficient volume of emergency broadcast sound can be delivered evenly.

The Study on the Characteristic Sound Intensity and Frequency of Noise Exposure at Occupational Sites (산업장 소음의 강도 및 주파수 특성에 관한 조사연구)

  • Kim, Kwang Jong;Cha, Chul Whan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.181-191
    • /
    • 1991
  • The present study determined the overall noise level and the distribution of sound pressure level over audible frequency range of noise produced at various work sites. Work-related noise greater than 80dBA produced from 98 separate work sites at 37 manufacturing companies and machine shops were analysed for the overall sound level (dBA) and frequency distribution. In addition, to determine the possible hearing loss related to work site noise, a hearing test was also conducted on 1,374 workers in these work sites. The results of the study were as follows ; 1. Of the total 98 work sites, 57 work sites(58.2%) produced noise exceeding threshold limit value (${\geq}90dBA$) set by the Ministry 01 Labor. In terms of different manufacturing industries the proportion of work sites which exceeded 90dBA was the highest for the cut-stone products industry with 6/6 work sites and lowest for the commercial printing industry with 1/13 work sites. 2. The percentage of workers who were exposed to noise greater than 90dBA was 19.8% (1,040 workers) 01 the total 5,261 workers. In terms of different industries, cut-stone products industry had the most workers exposed to noise exceeding 90dBA with 82.8%, textile bleaching and dyeing industry was next at 30.6% followed by fabricated metal products industry with 27.9%, plastic products manufacturing industry had the lowest percentage of workers exposed to 90dBA exceeding noise with 4.5%. 3. There was a statistically significant correlation between the frequency of noise-induced hearing loss and the percentage of workers exposed to noise exceeding 90dBA (P<0.05). 4. The frequency analysis of noise produced at the 98 work sites revealed that 44 work sites (44.9%) had the maximum sound pressure level at high-frequencies greater than 2KHz. In addition, significantly higher sound pressure level was detected at the high-frequencies at 90dBA exceeding work sites as compared to below 90dBA work sites (P<0.01). 5. The differences in sound level meter's A-and C-weighted sound pressure levels were analysed by frequencies. Of the 28 work sites which showed 0-1 dB difference in the two weighted sound levels, 20 work sites (71.4%) had significantly higher sound pressure levels at high-frequencies greater than 2KHz (P<0.01). Furthermore, there was a tendency for higher sound pressure levels to occur in the high-frequency range as the differences in the two weighted sound levels decreased.

  • PDF

Absolute sound level algorithm for contents platform (콘텐츠 플랫폼 적용을 위한 절대음량 알고리즘)

  • Gyeon, Du-Heon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.424-434
    • /
    • 2020
  • This paper describes an algorithm that calculates Absolute Sound Level (ASL) for contents platform. ASL is a single volume representing individual sound sources and is a concept designed to integrate and utilize the sound level units in digital sound source and physical domain from a speaker in practical areas. For this concept to be used in content platforms and others, it is necessary to automatically derive the ASL without having to go through a hearing of mastering engineers. The key parameters of which a person recognizes the representative sound level of an individual single sound source are the areas of "frequency, maximum energy, energy variation coefficient, and perceived energy distribution," and the ASL was calculated through the normalizing of the weights.

Acoustic Properties of Three-room Coupled System by Connected Two Apertures (개구부로 연결된 3중 커플룸의 음향특성)

  • Na, Hae Joong;Lim, Byoung-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.340-349
    • /
    • 2016
  • A coupled room system consists of adjacent rooms and apertures where the sound energy is exchanged between the two rooms. Acoustically, a coupled room system shows a non-exponential decay profile. Most of the related researches have been to analyze the acoustic properties of two-room coupled system so far whereas three-room coupled system were seldom studied. In this regard, this paper aims to analyse the distribution of sound pressure level, sound decay curve of three-room coupled system and sound energy flow between them by using the acoustic diffusion model and to further verify them through experiments. Firstly, the sound pressure level distribution and mean sound pressure level in the steady-state condition are analyzed at various frequencies and source locations. Good agreements are observed in both experiments and analysis results. Secondly, two double slope effect quantifiers of sound attenuation, LDT/EDT and LDT/T10 are compared at various frequencies and for different source locations. The result indicates that LDT/T10, less affected by the early reflection patterns than LDT/EDT, is more suitable to the analysis and experiments of a multi-slope sound decay curve. Lastly, the sound energy flow in each room is analyzed based on the acoustic diffusion model. After the early decay stage, the sound energy is observed to flow from the room with a long reverberation time to the room with a short one.

Calculation of transmission loss design values of a high speed train wall by acoustic analysis of exterior sound field (외부음장해석에 의한 고속전철 벽면에서의 투과손실 목표치 계산)

  • 김관주;유남식
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.249-256
    • /
    • 1998
  • Design target values of transmission loss in a high-speed train wall are suggested by calculating the difference between interior and exterior noise levels of it. Exterior noise level distribution on the boundary of train wall is calculated by Sysnoise, with sound source input prepared by experiments. Two kinds of exterior sound sources are considered, the rolling noise of train wheels on the rail and the aerodynamic noise from the pantograph. Interior noise level is provided by high-speed design target. Transmission loss characteristics according to the frequency band are examined.

  • PDF

Measurement of the Average Speed of Ultrasound and Implementation of Its Imaging Using Compounding Technique in Medical Ultrasound Imaging (초음파 의료영상에서 컴파운딩 기법을 이용한 초음파의 평균 음속도의 측정과 음속도 영상의 구현)

  • Jeong, Mok-Kun;Kwon, Sung-Jae;Choi, Min-Joo
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.233-240
    • /
    • 2009
  • Using a spatial compound imaging technique in a medical ultrasound imaging system, the average speed of sound in a medium of interest is measured, and imaging of its distribution is implemented. When the brightness reaches the highest level in an ultrasonic image obtained as the speed of sound used in focusing is varied, it turns out that the focusing has been accomplished satisfactorily and that the speed of sound which has been adopted becomes the sought-after average speed of sound. Because spatial compound imaging provides many different views of the same object, the adverse effect of erroneous speed-of-sound estimation tends to be more severe in compound imaging than in plain B-mode imaging. Thus, in compound imaging, the average speed of sound even in the case of speckled images can be accurately estimated by observing the brightness change due to different speeds of sound employed. Using this new method that offers spatial diversity, we can construct an image of the speed of sound distribution in a phantom embedded with a 10-mm diameter plastic cylinder whose speed of sound is different from that of the background. The speed of sound in the cylinder is found to be different from that of the surrounding medium.

Jet-Edge Interaction and Sound Radiation in Edgetones (쐐기소리에서 분류-쐐기의 상호작용과 소리의 방사)

  • ;Powell A.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.584-590
    • /
    • 1994
  • A theoretical model has been developed to analyze the jet-edge interaction and the sound radiation. The edge responding to the sinuous impinging jet is regarded as an array of dipoles and their strength is determined by the boundary condition on the edge surface. The surface pressure distribution and the edgeforce are estimated using these dipoles. Then the pressure amplitude and directivity of the sound field is obtained by summing the radiating sounds from the dipole sources. It is found that the effective source is located a little distance downstream from the edge tip. And the directivity of the sound radiation is cardioid pattern near the edge but dipole pattern far from the edge. The theoretical model is confirmed by comparing the theoretical prediction of the edgeforce and sound pressure level with available experimental data.