• Title/Summary/Keyword: Sound Emission

Search Result 109, Processing Time 0.026 seconds

레이져 용접에서 On-line process monitoring 방법과 플라즈마와 음파의 관계

  • 박정수;윤충섭;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.230-235
    • /
    • 1997
  • During laser welding, a laser induced matal vapour and plasuma is formed. The plasma shows strong fluctuation combined with acoustic sound emission. On-line monitoring of the process is possible by measuring and analysing the plasma and acoustic sound emission. This paper introduce the method of on line process monitoring in the laser beam welding and analysis being monitoring signal. The results show the complementary information on the process.

Characteristics of Noise Emission from Wind Turbine Generator According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터번 발전기의 방사 소음 특성)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.941-945
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and fun span pitch control. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbine generators (WTG) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. It is found that while 1.5 MW WTG using the stall control is found to emit lower sound power than 660 kW one using the pitch control at low wind speed (below 8 m/s), sound power from the former becomes greater than that of the latter in the higher wind speed. Equivalent continuous sound pressure levels (ECSPL) of the stall control type of WTG vary more widely with wind speed than those of the pitch control type of WTG These characteristics are believed to be strongly dependent on the basic difference of the airflow around the blade between the stall regulation and the pitch control types of WTG. These characteristics according to the methods of power regulation lead to the very different noise emission characteristics of WTG depending on the seasons because the average wind speed in summer is lower than the critical velocity over which the airflow on the suction side of blade in the stall types of WT are separated. These results propose that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

  • PDF

The auditory thresholds and fish behaviors to the underwater sounds for luring of target secies at the set-net in the coast of Cheju(II) -Critical ratios of the yellow tail(Seriola quinqueradiata)- (연안정치망 주요대상어종의 청각역치와 유집방음에 대한 행동반응(II) -방어(Seriola quinqueradiata)의 임계비)

  • 안장영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.19-24
    • /
    • 1999
  • This paper is second part on the auditory thresholds and fish behaviors to the underwater sounds for luring of target species at the set-net in the coast of Cheju. In order to obtain the critical ratio of yellow tails(Seriola quinqueradiata) and the emission level of underwater sound for luring of them, we make experiments to measure the auditory threshold of them using conditioning with electric shock. In state that the white noise with 10dB higher sound pressure level than ambient noise is emitted, the auditory thresholds of yellow tails are measured with 100~116.5dB and they are higher than those in state of no emission of white noise by the masking effects of it. Although sound pressure level of background noise go down, the auditory thresholds go up with frequency above than 300Hz.The critical ratio of yellow-tails in frequency of 80Hz, 100Hz, 200Hz, 500Hz, 800Hz are 46dB, 40dB, 50dB, 52dB, 60dB, 70dB respectively. The sound pressure level of which the signal sound is recognized by yellow tails under the ambient noise is above 100dB and the critical ratio of them is above 40dB.

  • PDF

Analysis of Aerodynamic Noise at Inter-coach Space of High Speed Trains

  • Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.7 no.4
    • /
    • pp.100-108
    • /
    • 2014
  • A numerical analysis method for predicting aerodynamic noise at inter-coach space of high-speed trains, validated by wind-tunnel experiments for limited speed range, is proposed. The wind-tunnel testing measurements of the train aerodynamic sound pressure level for the new generation Korean high-speed train have suggested that the inter-coach space aerodynamic noise varies approximately to the 7.7th power of the train speed. The observed high sensitivity serves as a motivation for the present investigation on elucidating the characteristics of noise emission at inter-coach space. As train speed increases, the effect of turbulent flows and vortex shedding is amplified, with concomitant increase in the aerodynamic noise. The turbulent flow field analysis demonstrates that vortex formation indeed causes generation of aerodynamic sound. For validation, numerical simulation and wind tunnel measurements are performed under identical conditions. The results show close correlation between the numerically derived and measured values, and with some adjustment, the results are found to be in good agreement. Thus validated, the numerical analysis procedure is applied to predict the aerodynamic noise level at inter-coach space. As the train gains speed, numerical simulation predicts increase in the overall aerodynamic sound emission level accompanied by an upward shift in the main frequency components of the sound. A contour mapping of the aerodynamic sound for the region enclosing the inter-coach space is presented.

Noise Characteristics of Rapier Loom by Noise Source Analysis (소음원 분석에 의한 직기 구조물의 소음 특성)

  • Na, Hae-Joong;Chun, Du-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.254-257
    • /
    • 2005
  • Locations and emission characteristics of noise source of rapier loom are important factors greatly. So, noise characteristics of rapier loom were investigated by the noise source identification as a part of experimental methods in this study. To identify the noise sources of the rapier loom sound intensity was measured under machine operation. In addition, frequency spectra of the sound at operator position was measured along with sound intensity to help identify the noise characteristics of the rapier loom. The results indicate that the sound power level occurs along the rapier loom.

  • PDF

Localization of Rotating Sound Sources Using Beamforming Method (빔형성방법을 이용한 회전하는 음원의 위치 판별에 관한 연구)

  • Lee Jaehyung;Hong Suk-Ho;Choi Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1338-1346
    • /
    • 2004
  • The positions of rotating sound sources have been localized by experiments with the Doppler effects removed. In order to de-Dopplerize the sound signals emitted from moving sources, two kinds of signal reconstruction methods were applied. One is the forward propagation method and the other is the backward propagation method. Forward propagation method analyze the source emission time based on the instantaneous distance between sensors and the assumed source position, then the signals are reconstructed with respect to the emission time. On the other hand, the backward method uses time delay to do-Dopplerize the acquired data for the received time of reference. In both techniques. the reconstructed signal data were processed using beamforming algorithm to produce power distributions at the frequencies of interest. Experiments have been carried out for varying frequencies, rotating speeds and the object distances. It is shown that the forward propagation method gives better performance in locating source position than the backward propagation method.

A Study on the Luring of fish Shoals into the Fyke net by the Underwater Sound Emission (제주도 연안의 각망어업에 있어서 수중음악에 의한 어군의 유집에 관한 연구)

  • Abn, Jang-Yong;Seo, Du-Ok;Kim, Sam-Kon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.50-58
    • /
    • 1996
  • The authors carried out a field experiment to confirm the effect of underwater sound on the luring of fish schools in a setnet in the coast of Cheju Island. The effects of the acoustic emission on the luring of fish schools were observed using a manufectured underwater speaker in the setnet, and pure sound, of which frequency was 600Hz and the source level was 126dB, was emitted on and off at 5 minutes intervals in the set net during the night of ,July 29 and ,July 31. So we had recorded behavior of fish schools by the telesounder with two channel and shape of the setnet by underwater video camera and analyzed them. When the flood and ebb currents were around the setnet, the nets rised to the surface of water and it happened occasionaly at the stand of tide. Therefore, it was in the state that fish schools feel constraint to enter into the setnet, and was required a new design of the setnet stand up to strong tidal current. As the pure sound, of which frequency was 600Hz was emitted for the luring of fish schools in a setnet, the catch ammounts of fish, the young horce mackereWI'rachllrlls japonicus), was increased 4~6 times than not emitted.

  • PDF

Characteristics of Noise Emission from Wind Turbine According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터빈의 방사 소음 특성)

  • Cheong, Cheol-Ung;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.864-871
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and full span pitch control. The main purpose of this paper is to experimentally identify the characteristics of noise emission of wind turbines according to the power regulation types. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbines (WT) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence, third-octave band levels and tonality are evaluated for both of WTs. It is observed that equivalent continuous sound pressure levels (ECSPL) of the stall control type of WT continue to increase with increasing wind speed whereas those of the pitch control type of WT show less correlation with wind speed. These observed characteristics are believed to be due to the different airflow patterns around the blade between the stall regulation and the pitch control types of WT; the airflow on the suction side of blade in the stall types of WT are separated at the high wind speed. It is also found that the 1.5 MW WT using the stall control emits lower sound power than 660 kW one using the pitch control at wind speeds below 8m/s, whereas sound power of the former becomes higher than that of the latter in the wind speed over 8m/s. This wind-speed dependence of sound power leads to the very different noise omission characteristics of WTs depending on the seasons because the average wind speed in summer is lower than 8m/s whereas that in summer is higher. Based on these experimental observations, it is proposed that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

Let-out of the Function of Sound Tube in the Bell King Songdok the Great (에밀레종의 萬波息笛音管의 기능을 살리는 方策)

  • 이병호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.3-9
    • /
    • 2000
  • The Bell King Songdok the Great tolls magnificient sound that would be a great vehicle which brings all beings to the Sutras. Since 693, there was a magic flute, MANPASIKJUK, which was in existence in Shilla Dynasty that could lull all the evil-wawes, such an plaques, storms, Droughts, Famines and even Enemies. Thus, a sound tube, MANPASIKJUK, was erected in the crown of the Bell Songdok the Great so as to be effective to emit the nominal frequency tone whenever the Bell tolls for the national prosperity and welfare the People. Therefore, the Bell makers tried to fine the transmissibility condition through the sound tubr, several times during 34 years, However, it seems to be unfinished. Ever since, all of the korean Brahman Bell have the sound tubes of MANPASIKJUK, but none is performed their own functions. Here, one of the way to let the function of the sound tube of MANPASIKJUK out in the Bell Songdok the Great is proposed. There are two steps: the 1st is to elongate 18cm to the present length 77cm to fulfill the transmissibility condition for the nominal frequency of sound is emitted through the corrected sound tybe. 2nd step is to rise to 95% of the emission of the tone of nominal frequency, so that an exponential hem with the flare constant 2.8m-1, length 2.259m and the radius of the mouth 1.772m is to be extended to the corrected sound tube.

  • PDF

A Quantitative Separation Method of Structure and Air Borne Sound Power from the Enclosure (차음구조물의 방사음향파워로부터 고체 및 공기전파음향파워의 정량적인 분리법)

  • 김의간;강동림
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.85-96
    • /
    • 1992
  • Engine enclosures are widely adopted to reduce the noise emission in various fields of application. The radiated noise, which is due to the vibration of enclosure's outer surface, is composed of two kinds of sound power with different path of propagation. One is the 'structure-borne sound power' which stems from the engine's vibratory force applied to the structure of enclosure through the mounting parts of engine etc., while the other is the 'air-borne sound power' which is originated by the sound power radiated from the engine surface to the inner space of enclosure that should excite the vibration of enclosure from inside. In order to get a most efficient engine enclosure is required a profound consideration upon the above structure-borne and air-borne noise, since the guiding principle of countermeasure for each noise is quite different. The controlling of input vibration and its isolation are major subject for the structure-borne sound power and the specifications of absorbing member and damping panels are the major interests for the air-borne sound power. Hence it seems very efficient to separate the total sound power into two categories with a great accuracy when one think of further reduction of engine noise from the exciting enclosure, however, its separating methods have not been made clear for many years. Then author proposes a new practical separation method of two propagation path's contribution to the total radiation sound power for the enclosure under the engine operating condition.

  • PDF