• 제목/요약/키워드: Sorting Algorithm

검색결과 282건 처리시간 0.02초

딥러닝을 이용한 의류 이미지의 텍스타일 소재 분류 (Textile material classification in clothing images using deep learning)

  • 이소영;정혜선;최윤성;이충권
    • 스마트미디어저널
    • /
    • 제12권7호
    • /
    • pp.43-51
    • /
    • 2023
  • 온라인 거래가 증가하면서 의류 이미지는 소비자의 구매 결정에 큰 영향을 미치게 되었다. 의류 소재에 대한 이미지 정보의 중요성이 강조되고 있으며, 의류 이미지를 분석하여 사용된 소재를 파악하는 것은 패션 산업에 있어서 중요하다. 의류에 사용된 텍스타일의 소재는 육안으로 식별하기 어렵고, 분류 작업에도 많은 시간과 비용이 소모된다. 본 연구는 딥러닝 알고리즘을 기반으로 의류 이미지로부터 텍스타일의 소재를 분류하고자 하였다. 소재를 분류함으로써 의류 생산 비용을 절감하고, 제조공정의 효율성을 증대하는데 도움이 되며 소비자에게 특정 소재의 제품을 추천하는 AI 서비스에 기여할 수 있다. 의류 이미지를 분류하기 위해 머신비전 기반의 딥러닝 알고리즘 ResNet과 Vision Transformer를 이용하였다. 760,949장의 이미지를 수집하였고, 비정상 이미지를 검출하는 전처리 과정을 거쳤다. 최종적으로 총 167,299장의 의류 이미지와 섬유라벨 19개, 직물라벨 20개를 사용하였다. ResNet과 Vision Transformer를 사용해서 의류 텍스타일의 소재를 분류하였으며 알고리즘 성능을 Top-k Accuracy Score 지표를 통해 비교하였다. 성능을 비교한 결과, ResNet 보다 Vision Transformer 알고리즘이 더 우수하였다.

다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형 (The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM)

  • 박지영;홍태호
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.