• Title/Summary/Keyword: Sorption Coefficients

Search Result 67, Processing Time 0.024 seconds

Moisture Movement in Softwood and its Activation Energy (침엽수재(針葉樹材) 내부수분이동(內部水分移動)과 확산활성화(擴散活性化)에너지)

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.27-33
    • /
    • 1991
  • Three kinds of specimens(radiata pine sapwood, radiata pine heartwood and whemlock heartwood) were dried at four temperature levels (30, 40, 50 and $60^{\circ}C$) in an emvironmental chamber. Unsteady-state diffusion coefficients were calculated from obtained drying fates by using infinite slab equation for first half of sorption and interval diffusion equation for second half of sorption. Activation energies for moisture diffusion in wood were calculated from the diffusion coefficients obtained at four temperatures. In most cases diffusion coefficients for radial movement were higher than those for tangential movement. Activation energy differences between sapwood and heartwood weren't significant for radial movement, but were significant for tangential movement. Most activation energies calculated from drying rates were lower than heat of water condensation(about 11,000cal/mole). Specially the avenge activation energy for sapwood tangential movement was only 5,000cal/mole.

  • PDF

Naphthalene Sorption on HPTMA-Modified Clays

  • 이승엽;김수진
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.52-52
    • /
    • 2001
  • Clays coated with cationic surfactants (organoclays) have been investigated due to their effectiveness in sorbing organic compounds from water The objectives of this study were to (1) study the sorption characteristics or a cationic surfactant (HDTMA) to clay minerals; (2) examine the partitioning of HOC (naphthalene) to the adsorbed surfactants within the context of the first objective, and (3) develop overall HOC distribution coefficients that consider sorbed surfactant amounts. The sorption of hydrophobic organic contaminant was due to partitioning of the organics into the organic pseudophase created by the surfactant tail groups. Sorption of naphthalene by HDTMA-clays at different surfactant surface coverages revealed that the naphthalene K$\_$d/ values were affected by the surface concentration of surfactant. In our study the kaolinite was modified with a cationic surfactant to achieve different fractional organic carbon contents and different surfactant molecule configurations on the surface. All of the sorption isotherms were nearly linear and could be described by a distribution coefficient (K$\_$d/). The sorption of naphthalene by the surfactant-modified kaolinite was found to be dependent on the bound surfactant molecule configuration as well as on the fractional organic carbon content but halloysite was not affected by the increase of surfactant amounts. Results from this investigation provide additional insight into the role that sorbed surfactant structure plays in HOC partitioning.

  • PDF

Sorption and Permeation of Orange II Through Nitrocellulose-Poly (vinylamine) Blended Membranes (니트로셀루로오스-폴리비닐아민 혼합막에 의한 Orange II의 수착과 투과)

  • Tak, Tae-Moon
    • Textile Coloration and Finishing
    • /
    • v.2 no.2
    • /
    • pp.33-38
    • /
    • 1990
  • Nitrocellulose [NC]-Poly(vinylamine) [PVAm] blended membranes with the change of amino group contents were prepared. The sorption and permeation of a mono-sulfonic acid dye, Orange II, in the membranes were investigated by the steady-state permeation method at $50^{\circ}C$ and pH 2.2. The results were discussed in the framework of dual sorption and diffusion theory. It was found that thesorption isotherms comprise a partition and two Langmuir type adsorption having similar binding constants. One of the latter sorption modes is due to unknown adsorption sites in NC and the other is due to the amino groups in PVAm. Apparent diffusion coefficients for collective P and L dye species, $D_P\; and D_L$, were obtained. Interpretation of $D_P$ values leads to two modes of partitions; one is such that dye is immobilized in NC and the other is the dissolution of the dye into the internal water phase.

  • PDF

A Study on the Correlations between Molecular Structures of Soil Humins and Sorption Properties of Phenanthrene (토양 휴민(Humin)의 분자구조 특성과 Phenanthrene 흡착상수와의 상관관계에 대한 연구)

  • Lee, Doo-Hee;Eom, Won-Suk;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.897-905
    • /
    • 2013
  • In this study, sorption coefficients (${\log}K_{OC}$, n) for the binding of phenanthrene (PHE) to soil humins, insoluble fraction of soil humc substances (HS), were determined and relationship between the sorption coefficients and structural characteristics of the soil humins were investigated. The soil humins used in the present study were isolated from 7 different soils including 5 domestic soils, an IHSS standard and a peat soil, and characterized by elemental analysis and CPMAS $^{13}C$ NMR method. $^{13}C$ NMR spectral features indicate that the soil humins are mainly made up of aliphatic carbons (57.1~72.3% in total carbon) with high alkyl-C moiety, and the alkyl-C contents ($C_{Al-H,C}$, %) was in order of granite soil Hu (26~42%) > volcanic ash soil, HL Hu (23.9%) > Peat Hu (14.0%). The results of correlation study show that a positive relationship ($r^2$ = 0.77, p < 0.05) between organic carbon normalized-sorption coefficients ($K_{OC}$, mL/g) and alkyl-C contents($C_{Al-H,C}$, %), while negative relationship ($r^2$ = (-)0.74, p < 0.05) between Freundlich sorption parameter (n) and H,C-substituted aromatic carbon contents ($C_{Ar-H,C}$, %). The magnitude of $K_{OC}$ values are also negatively well correlated with polarity index (e.g., PI, N + O)/C) ($r^2$ = (-)0.74, p < 0.1). These results suggest that the binding capacity (e.g., $K_{OC}$) for PHE is increased in soil humin molecules having high contents of alkyl-C or lower polarity, and nonlinear sorption for PHE increased as the H,C-substituted aromatic carbon contents ($C_{Ar-H,C}$, %) in the soil humins increased. The PHE sorption characteristics on soil humins are discussed based on the dual reactive mode of sorption model.

Biosorption of Lead $(Pb^{2+})$ from Aqueous Solution by Rhodotorula aurantiaca

  • Cho, Dae-Haeng;Yoo, Man-Hyong;Kim, Eui-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.250-255
    • /
    • 2004
  • The aim of this work was to investigate the adsorption isotherm and kinetic model for the biosorption of lead $(Pb^{2+})$ by Rhodotorula aurantiaca and to examine the environmental factors for this metal removal. Within five minutes of contact, $Pb^{2+}$ sorption reached nearly 86% of the total $Pb^{2+}$ sorption. The optimum initial pH value for removal of $Pb^{2+}$ was 5.0. The percentage sorption increased steeply with the biomass concentration up to 2 g/l and thereafter remained more or less constant. The Langmuir sorption model provided a good fit throughout the concentration range. The conformity of these data to the Langmuir model indicated that biosorption of $Pb^{2+}$ by R. aurantiaca could be characterized as a monolayer, single-site type phenomenon with no interaction between ions adsorbed in neighboring sites. The maximum $Pb^{2+}$ sorption capacity $(q_{max})$ and Langmuir constant (b) were 46.08 mg/g of biomass and 0.04 l/mg, respectively. The pseudo second-order equation was well fitted to the experimental data. The correlation coefficients for the linear plots of t/q against t for the second-order equation were 0.999 for all the initial concentrations of biosorbent for contact times of 180 min. The theoretical $q_{eq}$ value was very close to the experimental $q_{eq}$ value.

Application of nickel hexacyanoferrate and manganese dioxide-polyacrylonitrile (NM-PAN) for the removal of Co2+, Sr2+ and Cs+ from radioactive wastewater

  • Md Abdullah Al Masud;Won Sik Shin
    • Membrane and Water Treatment
    • /
    • v.15 no.2
    • /
    • pp.67-78
    • /
    • 2024
  • In this study, a nickel hexacyanoferrate and manganese dioxide-polyacrylonitrile (NM-PAN) composite was synthesized and used for the sorptive removal of Co2+, Sr2+, and Cs+ Cs+ in radioactive laundry wastewater. Single- and multi-solute competitive sorptions onto NM-PAN were investigated. The Freundlich (Fr), Langmuir (Lang), Kargi-Ozmıhci (K-O), Koble-Corrigan (K-C), and Langmuir-Freundlich (Lang-Fr) models satisfactorily predicted all the single sorption data. The sorption isotherms were nonlinearly favorable (Freundlich coefficient, NF = 0.385-0.426). Cs+ has the highest maximum sorption capacity (qmL = 0.855 mmol g-1) for NM-PAN compared to Co2+ and Sr2+, wherein the primary mechanism was the physical process (mainly ion-exchange). The competition between the metal ions in the binary and ternary systems reduced the respective sorption capacities. Binary and ternary sorption models, such as the ideal adsorbed solution theory (IAST) model coupled with single sorption models of IAST-Fr, IAST-K-O, IAST-K-C and IAST-Lang-Fr, were fitted to the experimental data; among these, the IAST-Freundlich model showed the most satisfactory prediction for the binary and ternary systems. The presence of cationic surfactants highly affected the sorption on NM-PAN due to the increase in distribution coefficients (Kd) of Co2+ and Cs+.

Sorption of Eu(III) and Th(IV) on Bentonite Colloids Considering Their Precipitation and Colloid Formation (침전 및 콜로이드 형성을 고려한 Eu(III)와 Th(IV)의 벤토나이트 콜로이드에 대한 수착)

  • Baik, Min-Hoon;Lee, Jae-Kwang;Lee, Seung-Yeop;Kim, Seung-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.129-139
    • /
    • 2008
  • In this study, a sorption experiment of multivalent nuclides such as Eu(III) and Th(IV) relatively stable for redox reactions was carried out for bentonite colloids which had been prepared from the domestic Gyeongju bentonite. The amounts of the nuclides lost by an attachment to bottle walls, by a precipitation, and by a colloid formation were estimated by performing blank tests for the sorption experiments. Sorption coefficients, $K_d's$, reflecting the mass losses were obtained and investigated for the sorption of Eu(III) and Th(IV) onto the bentonite colloids. The net sorption coefficients $K_d's$ considering all the three mass losses were measured as about $10^6-10^7\;mL/g$ and $7{\times}10^6-10^7\;mL/g$ for Eu(III) and Th(IV), respectively, depending on pH. In particular, a precipitation occurred mainly at a pH greater than 5 for Eu(III) and a precipitation and colloid formation significantly occurred at a pH greater than 3 for Th(IV). The precipitation and colloid formation of the multivalent nuclides of Eu(III) and Th(IV) therefore should be considered when $K_d's$ are rightly obtained over the pH range where their precipitation and colloid formation become significant at a given concentration.

  • PDF

The Determination of Diffusion and Partition Coefficients of PUF (폴리우레탄 폼의 휘발성 유기화합물 확산 및 분배계수 산정)

  • Park, Jin-Soo;Little, John C.;Kim, Shin-Do;Lee, Hee-Kwan;Kong, Boo-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • The diffusion and partition coefficients of polyurethane foam (PUF) are estimated using a microbalance experiment and small chamber test. The microbalance is used to measure sorption/desorption kinetics and equilibrium data. When the diffusion condition is controlled in the chamber of the sample, interactions between volatile organic compounds (VOCs) and PUF can lead to the estimation of a relatively homogenous rate of mass transfer in the interiors and surfaces of PUF. The estimates of the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) are shown to be independent of the concentrations of VOCs. This approach, if applied to a diffusion-controlled or physically-based model, can facilitate more precise prediction of their source/sink behavior. Although further research and more rigorous validation is needed, an emission model applied with the diffusion and partition coefficients from this research holds promise for the improvement of reliability in predicting the behavior of VOCs emitted from porous building materials by D and K.

Moisture Sorption Characteristics of Model Food Powders (모형 식품 분말의 흡습 특성)

  • Kim, Dong-Woo;Chang, Kyu-Seob;Kim, Suk-Shin;Lee, Un-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1146-1150
    • /
    • 1996
  • The purpose of this research was to provide fundamental data required for the process design of conveying, storage and processing of food powders. Potato starch, corn starch, wheat protein, soybean protein, and model food powders prepared by mixing potato starch and wheat protein were selected and their sorption characteristics such as equilibrium moisture content, monolayer moisture content, and sorption enthalpy were determined. Equilibrium moisture content and monolayer moisture content of high starch powders were higher than those of high protein powders, and the equilibrium moisture content decreased with temperature. The determination coefficients of the regression equations to predict the equilibrium moisture content of food powders were from 0.997 to 0.999. Sorption enthalpy experiments indicated that powder of high moisture content showed lower sorption than that of low· moisture content, and the high protein powder showed lower sorption than high starch powder.

  • PDF