• 제목/요약/키워드: Sorghum Distiller's Grains

검색결과 3건 처리시간 0.016초

Studies on the Use of Wet Sorghum Distiller's Grains in Lactating Cows

  • Chiou, P.W.S.;Chang, S.H.;Chiang, J.K.;Yu, B.;Chen, C.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권6호
    • /
    • pp.895-900
    • /
    • 1999
  • The aim of this study was to evaluate the effect of incorporating wet sorghum distiller's grains (WSDG) as part of their diet on the lactating performance of dairy cows. Twenty-seven Holstein milking cows were selected, all in the early lactating stage, with an average weight of 550 kg, and producing an average of 30 kg of milk daily. The cows were divided into three groups according to milk yield and lactation and were fed different total mixed rations. The diets were formulated according to NRC (1989) recommendations in three rations to (1) control diet, (2) 15% WSDG diet and (3) 30% WSDG diet. The three different diets were all formulated as iso-nitrogen and iso-energetic diets. After one week adaptation period, the experimental feeding was conducted for 8 weeks. Three ruminal cannulated cows were also examined in order to investigate ruminal fermentation of the three total mixed rations. The results showed that the milk yield, as corrected to the 4.0% fat standard, had no significant difference among the control, 15% WSDG and 30% WSDG treatment groups (p>0.05). The daily dry matter intake of the control group was higher than the other groups (p<0.05). with respect to milk composition, milk fat, milk protein and total solids, there was no significant difference among the treatment groups (p>0.05). The energy efficiency of the 30% WSDG group were significantly higher than the other treatment groups (p<0.05). Ruminal pH value showed no difference among the treatment groups (p<0.05). Ammonia-nitrogen concentration in the control group was higher than the other treatment groups (p<0.05). The concentration of total ruminal volatile fatty acid was similar in all three dietary groups.

Roughage Energy and Degradability Estimation with Aspergillus oryzae Inclusion Using Daisy In vitro Fermentation

  • Chen, C.R.;Yu, B.;Chiou, P.W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권1호
    • /
    • pp.53-62
    • /
    • 2004
  • The aim of this study was to predict the energy value and dynamic degradation of roughage in Taiwan using the $Daisy^{(R)}$. in vitro fermentation method to provide information on one of the very important nutrients for ration formulation. The second objective was to study the effects of Aspergillus oryzae (AFE) inclusion on nutrient utilization. Three ruminal fistulated dry dairy cows were used for rumen fluid and fifteen conventional forages used in dairy cattle were collected around this island. The degradability of these feedstuffs with and without AFE ($Amaferm^{(R)}$.) treatment was measured using the $Daisy^{(R)}$. in vitro method. The roughage energy values, including TDN and NEL, were calculated according to Robinson (2000). Results from the 30 h in vitro neutral detergent fiber (NDF) degradability and predicted energy evaluations showed that alfalfa (among the forages) contained the highest degradability and energy values, Bermuda straw having the lowest. Peanut vines and corn silage contained higher energy values and the lowest value found in Pangola and Napier grasses among the locally produced forages. Pangola and Napier grasses had lower values than most imported forages except Bermuda straw. Among the by-products, wheat middling contained the highest NDF degradability, while rice bran contained the richest energy value due to its high oil content. From the dynamic dry matter (DM), organic matter (OM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) degradation, corn silage contained the highest effective degradation among the local forages; wheat middling (among the by-products) degraded the fastest in DM, OM, ADF and NDF and showed the highest effective degradability. AFE inclusion was inconsistent among the forages. Alfalfa hay showed significantly increased 30 h NDF degradability and energy values, Pangola hay, Napier grass and brewer's grains showed decreased degradability and energy values. AFE inclusion increased the DM, OM and NDF degradation rate in most forage, but only increased the DM degradation rate in sorghum distiller's grains, the OM degradation rate in bean curd pomace and the NDF and ADF degradation rates in soy pomace (among the by-products).

Dose-dependent effects of a microbial phytase on phosphorus digestibility of common feedstuffs in pigs

  • Almeida, Ferdinando N.;Vazquez-Anon, Mercedes;Escobar, Jeffery
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.985-993
    • /
    • 2017
  • Objective: The objective of this study was to evaluate increasing doses of a novel microbial phytase (Cibenza Phytaverse, Novus International, St. Charles, MO, USA) on standardized total tract digestibility (STTD) of P in canola meal (CM), corn, corn-derived distiller's dried grains with solubles (DDGS), rice bran (RB), sorghum, soybean meal (SBM), sunflower meal (SFM), and wheat. Methods: Two cohorts of 36 pigs each (initial body weight = $78.5{\pm}3.7kg$) were randomly assigned to 2 rooms, each housing 36 pigs, and then allotted to 6 diets with 6 replicates per diet in a randomized complete block design. Test ingredient was the only dietary source of P and diets contained 6 concentrations of phytase (0, 125, 250, 500, 1,000, or 2,000 phytase units [FTU]/kg) with 0.4% of $TiO_2$ as a digestibility marker. Feeding schedule for each ingredient was 5 d acclimation, 5 d fecal collection, and 4 d washout. The STTD of P increased (linear or exponential $p{\leq}0.001$) with the inclusion of phytase for all ingredients. Results: Basal STTD of P was 37.6% for CM, 37.6% for corn, 68.6% for DDGS, 10.3% for RB, 41.2% for sorghum, 36.7% for SBM, 26.2% for SFM, and 55.1% for wheat. The efficiency of this novel phytase to hydrolyze phytate is best described with a broken-line model for corn, an exponential model for CM, RB, SBM, SFM, and wheat, and a linear model for DDGS and sorghum. Based on best-fit model the phytase dose (FTU/kg) needed for highest STTD of P (%), respectively, was 735 for 64.3% in CM, 550 for 69.4% in corn, 160 for 55.5% in SBM, 1,219 for 57.8% in SFM, and 881 for 64.0% in wheat, whereas a maximum response was not obtained for sorghum, DDGS and RB within the evaluated phytase range of 0 to 2,000 FTU/kg. These differences in the phytase concentration needed to maximize the STTD of P clearly indicate that the enzyme does not have the same hydrolysis efficiency among the evaluated ingredients. Conclusion: Variations in enzyme efficacy to release P from phytate in various feedstuffs need to be taken into consideration when determining the matrix value for phytase in a mixed diet, which likely depends on the type and inclusion concentration of ingredients used in mixed diets for pigs. The use of a fixed P matrix value across different diet types for a given phytase concentration is discouraged as it may result in inaccurate diet formulation.