• Title/Summary/Keyword: Soot yield

Search Result 20, Processing Time 0.021 seconds

Comparison between a Light-Scattering and a Light-Extinction Methods for the Study on Soot Yielding Characteristics of an Electric Cable Fire (전선 매연 생성 특성 연구를 위한 광산란법-광소멸법의 비교)

  • Cho, Sang-Moon;Lee, Min-Jung;Kim, Nam-Il
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.38-43
    • /
    • 2008
  • Significant portion of the fire accident is caused by some troubles in electric circuits. To prevent the fire induced by those electric trouble, some indications of electric fire need to be suitably detected at the first stage of the fire development. With this background, the characteristics of soot yielding of electric cables have been investigated using a light extinction method. In this study, a light scattering method was compared with the light extinction method. A slot-type premixed-flame combustor was traversed to bum three types of electric cables by compulsion, then the mass decrease rate and the soot densities were measured. According to the experimental results, the light scattering method is preferred to the light extinction method when the soot yield ratio is relatively small. Thus the former method is more suitable to detect the occurrence of an electric fire in a power distributer box.

Emission Characteristics of Gasoline/ethanol Mixed Fuels for Vehicle Fire Safety Design (차량화재 안전설계를 위한 휘발유/에탄올 혼합연료의 연소생성물 배출 특성)

  • Kim, Shin Woo;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.27-33
    • /
    • 2019
  • Combustion characteristics of gasoline/ethanol fuel were investigated both numerically and experimentally for vehicle fire safety. The numerical simulation was performed on the well-stirred reactor (WSR) to simulate the homogeneous gasoline engine and to clarify the effect of ethanol addition in the gasoline fuel. The simulating cases with three independent variables, i.e. ethanol mole fraction, equivalence ratio and residence time, were designed to predict and optimized systematically based on the response surface method (RSM). The results of stoichiometric gasoline surrogate show that the auto-ignition temperature increases but NOx yields decrease with increasing ethanol mole fraction. This implies that the bioethanol added gasoline is an eco-friendly fuel on engine running condition. However, unburned hydrocarbon is increased dramatically with increasing ethanol content, which results from the incomplete combustion and hence need to adjust combustion itself rather than an after-treatment system. For more tangible understanding of gasoline/ethanol fuel on pollutant emissions, experimental measurements of combustion products were performed in gasoline/ethanol pool fires in the cup burner. The results show that soot yield by gravimetric sampling was decreased dramatically as ethanol was added, but NOx emission was almost comparable regardless of ethanol mole fraction. For soot morphology by TEM sampling, the incipient soot such as a liquid like PAHs was observed clearly on the soot of higher ethanol containing gasoline, and the soot might be matured under the undiluted gasoline fuel.

Effect of Volatile Matter and Oxygen Concentration on Tar and Soot Yield Depending on Coal Type in a Laminar Flow Reactor (LFR에서 탄종에 따른 휘발분과 산소농도가 타르와 수트의 발생률에 미치는 영향)

  • Jeong, Tae Yong;Kim, Yong Gyun;Kim, Jin Ho;Lee, Byoung Hwa;Song, Ju Hun;Jeon, Chung Hwan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1034-1042
    • /
    • 2012
  • This study was performed by using an LFR (laminar flow reactor), which can be used to carry out different types of research on coal. In this study, an LFR was used to analyze coal flames, tar and soot yields, and structures of chars for two coals depending on their volatile content. The results show that the volatile content and oxygen concentration have a significant effect on the length and width of the soot cloud and that the length and width of the cloud under combustion conditions are less than those under a pyrolysis atmosphere. At sampling heights until 50 mm, the tar and soot yields of Berau (sub-bituminous) coal, which contains a large amount of volatile matter, are less than those of Glencore A.P. (bituminous) coal because tar is oxidized by the intrinsic oxygen component of coal and by radicals such as OH-. On the other hand, at sampling heights above 50 mm, the tar and soot yields of Berau coal are higher than those of Glencore A.P. coal by reacted residual volatile matter, tar and light gas in char and flame. With above results, it is confirmed that the volatile matter content and the intrinsic oxygen component in a coal are significant parameters for length and width of the soot cloud and yields of the soot. In addition, the B.E.T. results and the images of samples (SEM) obtained from the particle separation system of the sampling probe support the above results pertaining to the yields; the results also confirm the pore development on the char surface caused by devolatilization.

Study on the size spectrum and morphology of soot particles in a compartment fire (구획화재에서 매연입자의 시간에 따른 입경별 농도분포 및 형상 변화에 관한 연구)

  • Goo, Jae-Hark
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.258-261
    • /
    • 2011
  • 실내에서 화재가 발생한 경우에 매연의 크기분포 및 형상(morphology) 변화 특성은 경보장치의 작동 및 흡입에 의한 인체피해 등과 관련되어 중요한 연구 분야이다. 이와 관련하여 많은 연구가 이루어져 왔으나 실험에 의한 연구는 각 연구마다 결과치가 정량적 또는 정성적 측면에서 많은 편차를 보이고 있고, 이론적인 연구는 몇몇 특정 조건에 대하여 제한적으로 이루어져 있어서, 실재 구획화재에 적용하는 데는 어려움이 있다. 이 연구에서는 구획화재에 대하여 발열속도이력(history of heat release rate) 및 매연발생률(soot yield) 등에 따른 매연입자의 크기분포 및 형상 변화 해석을 위한 방법을 개발하였으며, 이를 유럽표준시험화재(EN54 Part7)에 규정된 폴리우레탄폼화재(TF4)에 대하여 시험 적용하였다. 이 방법에서는 입자의 크기분포방정식(dynamic equation for the discrete-size spectrum)을 푸는데 있어서 계산시간을 줄이기 위하여 결절방법(nodal method)을 도입하였으며, 또한 실재 화재에서의 매연입자의 성장에 따른 입경범위에 맞추기 위하여 분자운동영역(free molecular region)과 연속영역(continuum region)을 포괄하는 입자크기에 적용되는 충돌빈도함수(collision frequency function)를 사용하였다.

  • PDF

Smoke Characteristics of a Small Scale Pool Eire (작은 풀화재에서의 연기 특성)

  • Lee Eui-Ju;Ahn Chan-Sol;Shin Hyun-Joon;Oh Kwang-Chul;Lee Uen-Do
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.58-63
    • /
    • 2005
  • Experimental measurements of flames and the product properties were performed for small kerosene pool fires. which is widely used as a fire source of laboratory scale experiments with scaling modeling. The flame length and flickering frequency were investigated for the flame structures, and compared with the theory. Three measurement methods were introduced to clarify the smoke characteristics, i.e. various gas concentrations, smoke density and thermophoretic sampling with transmission electron microscopy (TEM). The yield of carbon dioxide and the consumption of oxygen were proportional to the heat release rate of pool fires, but there is no trend on carbon monoxide emission. Smoke density of turbulent flames was exponentially increased with the heat release rate. The morphology of the soot particle was investigated to address the degree of soot maturing. The results show that the similar smoke morphology between an inverse jet flame and a pool fire exists despite of different combustion controlling mechanisms.

Modeling of Solid Particle-Slag Interactions in Entrained Gasification Reactor (분류층 가스화기에서의 고체 입자-슬래그 간 상호 작용에 대한 모델링)

  • Chi, Jun-Hwa;Kim, Ki-Tae;Kim, Sung-Chul;Chung, Jae-Hwa;Ju, Ji-Sun;Kim, Ui-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.686-698
    • /
    • 2011
  • Mathematical models for char-slag interaction and near-wall particle segregation developed by Montagnaro et. al. were applied to predict various aspects of coal gasification in an up-flow entrained gasifier of commercial scale. For this purpose, some computer simulations were performed using gPROMS as the numerical solver. Typical design parameters and operating conditions of the commercial gasifiers were used as input values for the simulation. Development of a densely dispersed phase of solid carbon was found to have a critical effect on both carbon conversion and ash flow behavior. In general, such a slow-moving phase was turned out to enhance carbon conversion by lengthening the residence time of char or soot particles. Furthermore, it was also found that guiding the transfer of char or soot into the closer part of the wall to coal burner is favorable in terms of gasification efficiency and vitrified ash collection. Finally, to a certain degree densely dispersed phase of carbon showed an yield-enhancing effect of syngas.

Estimating Door Open Time Distributions for Occupants Escaping from Apartments

  • Hopkin, Charlie;Spearpoint, Michael;Hopkin, Danny;Wang, Yong
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.73-83
    • /
    • 2021
  • The door open time, resulting from occupants evacuating from apartments, is an important parameter when assessing the performance of smoke ventilation systems in high-rise apartment buildings. However, the values recommended in UK design guidance appear to have limited substantiation. Monte Carlo simulations have been carried out considering variabilities in door swing time, flow rate and number of occupants. It has been found that the door open time can be represented by a lognormal distribution with a mean of 6.6, 8.7 and 11.1 s and a standard deviation of 1.7, 3.2 and 4.7 s for one, two and three-bedroom apartments, respectively. For deterministic analyses, it is proposed that the 95th percentile values may be adopted in line with recommended practice for other fire safety design parameters such as fuel load density and soot yield, giving door open times of 10 s to 19 s, depending on the number of bedrooms.

Combustion Stability and the Properties of Methane/Air Mixture Subjected to Unsteady Flow Fluctuations (비정상 유동의 메탄/공기 혼합기 반응안정성 효과 연구)

  • Lee, Eui-Ju;Oh, Chang-Bo
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.1-6
    • /
    • 2011
  • Flame extinction and the chemistry of stoichiometric methane/air mixture were investigated numerically in the PSR(perfectly stirred reactor). For the study, PSR code was modified to be possible to unsteady calculation, and the sinusoidal fluctuation was subjected to the residence time. In the region of residence time far from the extinction limit, combustion mode was strongly dependent on the frequency. The low frequency excitation provided the quasi-steady behavior on the temperature and the concentrations of related species, but small variation of temperature was observed under high frequency. In the region of residence time near the extinction limit, the mixture subjected above 1 KHz was still reacting even though extinction had to be occurred under quasi-steady concept. The attenuation of extinction limit resulted from that chemical time was comparable to the flow time. The mean mole fractions of both NO and CO were almost same regardless of imposed frequency. However, the average mole fraction of $C_2H_2$ was decreased as increasing frequency, which implies that soot yield might be reduced at the higher frequency of flow excitation. The result provides the basic concept for flame stabilization, and it will be used to design a mild combustor.

Assessment of the Habitability for a Cabinet Fire in the Main Control Room of Nuclear Power Plant using Sensitivity Analysis (민감도 분석을 이용한 원전 주제어실의 케비닛 화재에 대한 거주성 평가)

  • Han, Ho-Sik;Lee, Jae-Ou;Hwang, Cheol-Hong;Kim, Joosung;Lee, Sangkyu
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.52-60
    • /
    • 2017
  • Numerical simulations were performed to evaluate the habitability of an operator for a cabinet fire in the main control room of a nuclear power plant presented in NUREG-1934. To this end, a Fire Dynamics Simulator (FDS), as a representative fire model, was used. As the criteria for determining the habitability of operator, toxic products, such as CO, were also considered, as well as radiative heat flux, upper layer temperature, smoke layer height, and optical density of smoke. As a result, the probabilities of exceeding the criteria for habitability were evaluated through the sensitivity analysis of the major input parameters and the uncertainty analysis of fire model for various fire scenarios, based on V&V (Verification and Validation). Sensitivity analyses of the maximum heat release rate, CO and soot yields, showed that the habitable time and the limit criterion, which determined the habitability, could be changed. The present methodology will be a realistic alternative to enhancing the reliability for a habitability evaluation in the main control room using uncertain information of cabinet fires.

A Study on the Combustion Efficiency Concept in Under-ventilated Compartment Fires (환기부족 구획화재에서 연소효율 개념에 대한 고찰)

  • Ko, Gwon-Hyun;Park, Chung-Hwa;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.145-152
    • /
    • 2010
  • A study on combustion efficiency concept was conducted for the under-ventilated fires in a fullscale ISO 9705 room. In particular, a comparison between global combustion efficiency (CE) measured outside the compartment and local CE measured at upper layer inside the compartment was focused. Heptane, toluene and iso-propanol were used to consider the wide ranges of heat of combustion and soot yield. As a result, the global CE was decreased linearly with increasing in global equivalence ratio (GER). On the other hand, the decreasing rate of local CE was increased gradually with increasing in GER. From these results, it was known that the information on local CE was very useful parameter to understand the fire phenomena inside the compartment. In addition, it was discussed that the local CE might be used as an important parameter in the process of scaling for the compartment fires.