• Title/Summary/Keyword: Soot particle

Search Result 110, Processing Time 0.027 seconds

Soot Size and Concentration Measurements in a Laminar Diffusion Flame Using a Lignt Scattering/Extinction Technique (광산란 소멸법을 이용한 층류확산화염내에 매연입자의 크기 및 농도 측정)

  • 하영철;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1796-1804
    • /
    • 1992
  • Profiles of soot volume fraction, average diameter and particle number density have been measured using a light scattering and extinction technique in a coannular propane diffusion flame at atmosperic pressure. Temperature profiles were also obtained using a thermocouple technique. Measurements show that soot is first observed to form low in the flame in an annular region inside the main reaction zone. At higher locations this annular region widen until entire flame is observed to contain particles. Soot volume fraction and particle diameter profiles peak some 1mm on the fuel side of peak temperature and increase with height to oxidation region. Number density of the flame core drop steeply from formation region to growth region and relatively invariant to some height and decay out at flame tip.

Prediction of Soot Emissions and Particle Size distribution by KIVA3V and SWEEP in a diesel engine (KIVA3V와 SWEEP을 이용한 디젤 엔진에서의 soot 총량 및 입자 크기 분포 예측)

  • Lee, Jaeseo;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.129-132
    • /
    • 2012
  • Computation is performed to predict number density, volume fraction and size distribution of soot particles in typical operating conditions of a diesel engine. KIVA has been integrated with the CMC routine to consider turbulence/chemistry coupling and gas phase kinetics for heat release and soot precursors. The compositions of soot precursors are estimated by tracking Lagrangian particles to consider spatial inhomogeneity and differential diffusion in KIVA. The soot simulator SWEEP is employed as a postprocessing step to calculate conditional and integral quantities of soot particles.

  • PDF

Flickering Frequency and Pollutants Formation in Microwave Induced Diffusion Flames (마이크로파가 인가된 화염에서의 주파수 특성과 오염물질 생성)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.22-27
    • /
    • 2016
  • The use of electromagnetic wave has been interested in various energy industry because it enhances a flame stability and provides higher safety environments. However it might increase the pollutant emissions such as NOx and soot, and have harmful influence on human and environments. Therefore, it is very important to understand interaction mechanism between flame and electromagnetic wave from environmental point of view. In this study, an experiment was performed with jet diffusion flames induced by electromagnetic wave. Microwave was used as representative electromagnetic wave and a flickering flame was introduced to simulate the more similar combustion condition to industry. The results show that the induced microwave enhances the flame stability and blowout limit. The unstable lifted flickering flames under low fuel/oxidizer velocity is changed to stable attached flames or lift-off flames when microwave applied to the flames, which results from the abundance of radical pool. However, NOx emission was increased monotonically with increasing the microwave power as microwave power increased up to 1.0 kW. The effects might be attributed to the heating of combustion field and thermal NOx mechanism will be prevailed. Soot particle was examined at the post flame region by TEM grid. The morphology of soot particle sampled in the microwave induced flames was similar to the incipient soot that is not agglomerated and contain a lots of liquid phase hydrocarbon such as PAH, which soot particle formed near reaction zone is oxidized on the extended yellow flame region and hence only unburned young particles are emitted on the post flame region.

An Experimental Study on the Measurement of Soot Contamination in a Diesel Engine Oil (디젤 엔진오일 내 Soot 함량 증가에 따른 오염도 측정에 관한 실험적 고찰)

  • 공호성;조성용;윤의성;한흥구;정동윤
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.251-258
    • /
    • 2003
  • New method and device for the on-line measurement of soot concentration in a diesel engine oil are proposed, where the measurement principle is based mainly on attenuated internal total reflection. The detector were evaluated in various ranges of contaminated oils by carbon black particles. It was found that the proposed detector could be well used to monitor the oil deterioration due to soot contamination. Operational range of the detector was found from 0 to 5 mass percentage of soot content. Test results with water and fuel dilution showed that these effects were not remarkable. However, adsorption of carbon black particles onto the measurement surface was considered to be a critical problem of the detector. Effects of particle deposition on the interface was experimentally evaluated with the oil temperature and flow turbulence and discussed throughout this work.

Morphological Study on the Soot Transition in a Propane/Air Laminar Diffusion Flame (프로판 층류확산화염의 그을음 천이에 대한 형태학적 연구)

  • Shim, Sung-Hoon;Yoo, Chang-Jong;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.24-33
    • /
    • 2002
  • The morphology of deposits on $15-{\mu}m$ thin SiC filaments has been investigated with SEM in a co-flowing, propane/air laminar diffusion flame. The average size of mature soot particles deposited in the luminous flame edge is strongly dependent on their axial position in a typical heavily sooting flame. The surface growth of liquid-phase PAHs molecules and the transition to soots from fully-developed precursors could be observed in the radial deposition of the flame. Two sooting regimes were found: one is the transition from the condensed-phase precursors; the other is the aggregation of smaller soot particles (or chains of them) to be carried along particle path lines. In the high temperature flame edge outside the soot luminous flame surface, the very thin fiber-like structures, which are about 10 nm thick, were found.

  • PDF

Light Extinction Characteristics of Soot Particle in Hydrocarbon Inverse Diffusion Flames. (역 확산화염 내 매연입자에 의한 광소멸 특성 연구)

  • Lim, Sangchul;Lee, Seunghoon;Ahn, Teakook;Nam, Younwoo;Park, Sunho
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.257-260
    • /
    • 2015
  • Light extinction characteristics of soot particles in ethylene and propane inverse diffusion flames have been experimentally investigated. The measured data suggested that the refractive index of soot particles varies with light wavelength due to PAH contents existing during the soot growth process. The results showed that the scattering effect is less important as the size of secondary particles rarely affects the optical properties of the soot even when the size is large enough to deviate from Rayleigh assumptions.

  • PDF

Observation of Soot Behavior in Diffusion Flame according to Surrounding Air Velocity (분위기유속에 따른 확산화염내 매연거동파악)

  • Choi, Jae-Hyuk;Park, Won-Seok;Yoon, Seok-Hun;Oh, Cheol;Kim, Myoung-Hwan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.254-255
    • /
    • 2005
  • The effect of surrounding air velocity on the soot deposition process from a diffusion flame to a solid wall was investigated in a microgravity environment to attain in-situ observations of the process. An ethylene($C_2H_4$) diffusion flame was formed around a cylindrical rod burner in surrounding air velocity of $v_{air}$=2.5, 5, and 10 cm/s with oxygen concentration of 35 % and wall temperature of 300 K. Laser extinction was adopted to determine the soot volume fraction distribution between the flame and burner wall. The experimental results show that the soot particle distribution region moves closer to the surface of the wall with increasing surrounding air velocity. A numerical simulation was also performed to understand the motion of soot particles in the flame and the characteristics of the soot deposition to the wall. The results successfully predicted the differences in the motion of soot particles by different surrounding air velocity near the burner surface and are in good agreement with observed soot behavior in microgravity. A comparison of the calculations and experimental results led to the conclusion that a consideration of the thermophoretic effect is essential to understand the soot deposition on walls.

  • PDF

Application of Ultrasonic for agglomeration of fine soot particles (미세 매연입자의 응집을 위한 초음파장의 적용)

  • Jeong, Sang-Hyun;Hong, Won-Seok;Shim, Sung-Hun;Kim, Yong-Jin;Lee, Sung-Bum
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.41-49
    • /
    • 2003
  • Ultrasonic field of 28kHz with sound pressure level 162dB has been employed to agglomerate the fine soot particle produces in a diffusion flame in a chamber. The agglomeration process has been investigated with digital camcorder and analysed in terms of the decrease of number density with exposure time. From the observation of agglomeration process, the initial agglomeration has been carried out during the short time, and it has been dominated by the orthokinetic collision. Thereafter, a slower agglomeration mechanism, driven by acoustic streaming in the chamber takes over and agglomeraters grew to diameters of several millimeters were levitated at the pressure node of the acoustic wave. And, the circular disk shape of large agglomeraters with the rotational and translational motion is observed.

  • PDF

Flow Velocity Measurement for Laminar Diffusion Flames Utilizing LII Signal from Soot Particles (매연입자의 LII 신호를 이용한 충류확산화염 유동속도 측정)

  • Lee, Jung-Soo;Nam, Youn-Woo;Lee, Won-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.157-163
    • /
    • 2006
  • A new technique utilizing LII signal for the measurement of flow velocities of laminar diffusion flames has been investigated. Soot particles in ethylene diffusion flames are heated by a modulated Ar-ion laser beam. LII signals and their phase angles are measured using a lock-in amplifier at the different flame heights and the axial flow velocity are obtained from the measured phase angle delay. The measured velocities are similar to those from LDV measurements under the same operating conditions. The effects of laser power, LII signal wavelength, and modulation frequency are not sensitive to the velocity measurement. However, the choice of an optical chopper blade type could affect the measurement result. The use of a 6/5 chopper blade showed the better result that is possibly due to the square shape of modulated laser beam. This study successfully demonstrated that axial flow velocities of laminar diffusion flames can be measured by a new technique utilizing LII signal, which does not need particle seeding unlikely to LDV or PIV techniques.

  • PDF

Effects of AC Electrostatic Field Applied to fin-to-Pin/Plate-to-Plate Electrodes on Soot Reduction in a C2B4 Normal Diffusion Flame (핀-핀 형 또는 판-판 형 전극에 인가된 AC 전기장이 에틸렌 정상 확산 화염 Soot 입자 배출에 미치는 영향)

  • Lee, Jae-Bok;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1062-1068
    • /
    • 2002
  • In our previous study, it was proven that the mean size and the total number concentration of carbon soot particles emitted from a $C_2$H$_4$ normal diffusion flame decreased when a DC corona was discharged to pin-pin electrodes. In this work the effect of AC corona discharge on soot emission was investigated and compared with that of DC corona discharge. For the pin-pin electrodes the size of soot particles and the number concentration decreased by the AC voltage. There were only slight changes in size distribution with frequencies, while the magnitude of applied voltage was constant. When the electric field was applied to plate-plate electrodes, the size and the number concentration also decreased with the applied AC voltages. For applied voltages above 2kV the effect of frequency increase on the soot emission was effective.