• Title/Summary/Keyword: Soot Emissions

Search Result 167, Processing Time 0.022 seconds

A Study on the Characteristics of NOx and Smoke for Diesel Engine by Fuel (연료성상에 따른 디젤엔진의 질소산화물 및 스모크 배출특성에 관한 연구)

  • Nam, Jeong-Gil;Lee, Don-Chool;Han, Won-Hui;Park, Jeong-Dae;Kang, Dae-Sun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.145-146
    • /
    • 2006
  • The main objective of this research is to develop a system which will provide a more efficient fuel saying measure for the current marine products industry situation caused by the increased cost of oil. For that function, the developed system has been verified using the medium of blending oil known as the MF 30 class. As a result, MF 30 was confirmed meeting the International Standard for NOx emissions and content of Sulfur. Oil composition and soot level analysis showed that it is acceptable to use MF 30 class in condition of proper engine running operation and pre-refinery treatment.

  • PDF

Technology for Reducing NOx and Soot Particulate using EGR with Water Emulsified Fuel in Diesel Engines (물혼합 연료 및 EGR의 조합에 의한 디젤기관의 질소산화물과 매연미립자 동시저감 기술에 관한 연구)

  • 박권하;박태인;김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 1997
  • Many research works have been carried out to investigate the factors governing the performance of diesel engine. The area of the study has been focused on reducing both of NOx and smoke because of many difficulties to reduce them simultaneously in diesel engines. One of the efforts is an application of EGR technology to reduce NOx emission, which is very effective, but increases other emissions and makes fuel economy worse. In order to solve the problem, EGR is employed with water emulsified fuel and tested in this paper. Emulsified fuel is produced by centrifugal mixer and the amount of water is controlled by water injector and pulse generator, and EGR rate is controlled with 6-step control valve. The chamber pressure, fuel consumption and emissions are measured with various values of both EGR and water mixing rate, The results show that NOx emission is reduced much rather and smoke is also reduced simultaneously.

  • PDF

A Study on the Effect of Injection Rate on Emission Characteristics in D.I. Diesel Engine by Multi-zone Model (Multi-zone 모델에 의한 디젤엔진에서의 분사율 변화에 따른 배기가스 특성에 관한 연구)

  • ;;;;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.94-103
    • /
    • 1999
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed . This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. It takes into consideration, on a zonal basis ,detailed of fuel spray formation, droplet evaporation, air-fuel mixing, spray wall interaction, swirl , heat transfer, self ignition and burning rate . The emission model is considered with chemical equipment , as well as the kinetics of fuel. NO and soot reactions in order to calculate the pollutant concentrations within each zone and the whole of cylinder . The accuracy of prediction versus experimental data and the capability of the model in predicting engine heat release, cylinder pressure and all the major exhaust emissions on zonal and cumulative basis., is demonstrated. Detailed prediction results showing the sensitivity of the model bv various injection rates are presented and discussed.

  • PDF

Optimization of aircraft fuel consumption and reduction of pollutant emissions: Environmental impact assessment

  • Khardi, Salah
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.311-330
    • /
    • 2014
  • Environmental impact of aircraft emissions can be addressed in two ways. Air quality impact occurs during landings and takeoffs while in-flight impact during climbs and cruises influences climate change, ozone and UV-radiation. The aim of this paper is to investigate airports related local emissions and fuel consumption (FC). It gives flight path optimization model linked to a dispersion model as well as numerical methods. Operational factors are considered and the cost function integrates objectives taking into account FC and induced pollutant concentrations. We have compared pollutants emitted and their reduction during LTO cycles, optimized flight path and with analysis by Dopelheuer. Pollutants appearing from incomplete and complete combustion processes have been discussed. Because of calculation difficulties, no assessment has been made for the soot, $H_2O$ and $PM_{2.5}$. In addition, because of the low reliability of models quantifying pollutant emissions of the APU, an empirical evaluation has been done. This is based on Benson's fuel flow method. A new model, giving FC and predicting the in-flight emissions, has been developed. It fits with the Boeing FC model. We confirm that FC can be reduced by 3% for takeoffs and 27% for landings. This contributes to analyze the intelligent fuel gauge computing the in-flight fuel flow. Further research is needed to define the role of $NO_x$ which is emitted during the combustion process derived from the ambient air, not the fuel. Models are needed for analyzing the effects of fleet composition and engine combinations on emission factors and fuel flow assessment.

Emissions of Marine Heavy Fuel Oil in the Spray Flame

  • An, Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1030-1035
    • /
    • 2008
  • Recently, the International Maritime Organization makes an effort for an effective solution against the emissions from shipping in the international maritime industry. The objective of the study was to quantify the exhaust emissions of marine heavy fuel oil in the combustion process of the spray flame. An experiment was performed to measure CO, $CO_2$, NOx, $SO_2$, ${N_2}O$, DS, SOF and the other components with the flame temperature. The sampling probe was directly set up in the flame fields at each position of 103, 324, 545, 766 and 987mm vertically apart from the fuel-injected nozzle in the burner furnace. From the results of the study, it was estimated that approximately 270ppm of oxides of nitrogen (NOx), $1000{\sim}1400ppm$ of sulfur dioxide ($SO_2$), 8ppm of nitrous oxide (${N_2}O$), $2.0{\sim}2.5g/m^3$ of particulate matter (PM) divided with dry soot (DS) and soluble organic fraction (SOF) and $60{\sim}80mg/m^3$ of sulfuric acid. With respect to further development of this work, the emission quantification could also be applied to assessing emission reduction from the international shipping.

Performance and emission characteristics of biodiesel blends in a premixed compression ignition engine with exhaust gas recirculation

  • Kathirvelu, Bhaskar;Subramanian, Sendilvelan
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.294-301
    • /
    • 2017
  • This paper is based on experiments conducted on a stationary, four stroke, naturally aspirated air cooled, single cylinder compression ignition engine coupled with an electrical swinging field dynamometer. Instead of 100% diesel, 20% Jatropha oil methyl ester with 80% diesel blend was injected directly in engine beside 25% pre-mixed charge of diesel in mixing chamber and with 20% exhaust gas recirculation. The performance and emission characteristics are compared with conventional 100% diesel injection in main chamber. The blend with diesel premixed charge with and without exhaust gas recirculation yields in reduction of oxides of nitrogen and particulate matter. Adverse effects are reduction of brake thermal efficiency, increase of unburnt hydrocarbons (UBHC), carbon monoxide (CO) and specific energy consumption. UBHC and CO emissions are higher with Diesel Premixed Combustion Ignition (DPMCI) mode compared to compression ignition direct injection (CIDI) mode. Percentage increases in UBHC and CO emissions are 27% and 23.86%, respectively compared to CIDI mode. Oxides of nitrogen ($NO_x$) and soot emissions are lower and the percentage decrease with DPMCI mode are 32% and 33.73%, respectively compared to CIDI mode.

The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine (승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, Hyun-Gu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

Effects of the Characteristics of Exhaust Emissions by Using Bio Fuel in Marine Diesel Engine (선박디젤기관에 있어서 바이오연료가 배기배출물특성에 미치는 영향)

  • Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.103-108
    • /
    • 2015
  • Recent global warming has been recognized as the world economy development from fossil fuel use is the culprit. This study was reduce the fossil fuel has been developed in a number of alternative energy, As a fuel that can be produced in our country is a biofuel. Biofuels is a sustainable fuel having economically benefits and decreasing environmental pollution problems caused due to fossil fuel. A lot of research is progressing about the conversion of diesel biofuel as renewable clean energy. In this experiment were remodel the institution that has been used in fishing engine again produced an experimental apparatus were installed directly, were studied using various bio fuel like to help the economically and environmentally sound operation of the vessel. rapeseed oil, soybean oil, comprehensively analyzing the results the effects of the exhaust emission characteristics of the waste rapeseed oil is available in a marine engine with similar physical and chemical components of the fuel, and the fuel consumption ratio, NOx is slightly increased, but soot was confirmed a tendency to decrease much.

Numerical Study on the Fuel Spray Targeting for the Improvement of HSDI Engine Performance (HSDI 엔진 성능 향상을 위한 연료분사 타겟팅에 관한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.569-576
    • /
    • 2016
  • The objective of this study was to investigate, using a numerical method, the fuel injection targeting for improving the combustion performance in a HSDI diesel engine. In this work, the ECFM-3Z model was applied as the combustion model, and the injection mass, inclined spray angle, and injection timing were varied for the study on the targeting of fuel spray. The results of this work were compared in terms of cylinder pressure, rate of heat release, and exhaust emissions characteristics. It was found that the cylinder pressure increased when the injection timing was advanced, and the rate of heat release increased when more fuel was injected into the piston bowl. In addition, $NO_x$ emission increased owing to the increase in the rate of heat release. On the other hand, CO and soot emissions decreased because of the improvement in combustion performance.

A Study on Temperature Measurements of Droplet Diffusion Flame using a Two Color Method (이색법을 이용한 액적 확산 화염의 온도 측정에 관한 연구)

  • Lee, Jong-Won;Kim, Youn-Kyu;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.20-25
    • /
    • 2017
  • In the present study, the temperature distribution of droplet diffusion flames was predicted from the measurements of radiative emissions of soot particles formed. In order to predict the temperature distributions, the radiative emissions from soot particles filtered at both 700 nm and 900 nm were measured using CCD cameras and local emission distributions within the flame deconvoluted with Abel transformation were plugged into a two color method. The experimental results obtained from the present study demonstrate that the two color method as tool for temperature measurements is feasible but can introduce approximately 2% maturement errors in a deconvolution process depending on intervals for the line of sight. The estimated error in temperature measurements was found to be within 18 K at 2000 K.