• Title/Summary/Keyword: Sonoran Desert

Search Result 3, Processing Time 0.015 seconds

Study on Radiometric Variability of the Sonoran Desert for Vicarious Calibration of Satellite Sensors (위성센서 대리 검보정을 위한 소노란 사막의 복사 가변성 연구)

  • Kim, Wonkook;Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.209-218
    • /
    • 2013
  • The Sonoran Desert, which is located in North America, has been frequently used for vicarious calibration of many optical sensors in satellites. Although the desert area has good conditions for vicarious calibration (e.g. high reflectance, little vegetation, large area, low precipitation), its adjacency to the sea and large variability in atmospheric water vapor are the disadvantages for vicarious calibration. For vicarious calibration using top-of-atmospheric (TOA) reflectance, the atmospheric variability brings about degraded precision in vicarious calibration results. In this paper, the location with the smallest radiometric variability in TOA reflectance is sought by using 12-year Landsat 5 data, and corrected the TOA reflectance for bidirectional reflectance distribution function (BRDF) which is another major source of variability in TOA reflectance. Experiments show that the mid-western part of the Sonoran Desert has the smallest variability collectively for visible and near-infrared bands, and the variability from the sunarget-sensor geometry can be reduced by the BRDF correction for the visible bands, but not sufficiently for the infrared bands.

Comparing Plant Species Diversity of Mountainous Deserts - Successes and Pitfalls

  • Van Etten, Eddie J.B.
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.79-86
    • /
    • 2004
  • An extensive study of the vegetation characteristics of the Hamersley Ranges, a mountainous desert area of north-west Australia, facilitated the comparison of plant species diversity measures with mountainous deserts of other parts of the world. Alpha diversity was defined as the number of species co-existing at local scales and was found to average 18 species per 0.1 ha for the Hamersley Ranges. This was found to be similar to seven other mountainous deserts in North and South America, and southern Africa. Variation in alpha diversity between these deserts was found to considerably lower than within deserts, suggesting that local processes control species richness at local scales. Beta diversity, defined here as turnover in species composition at various spatial scales, can be measured in many ways. For the Hamersley Ranges, Wilson's β ranged from 1.2 to 1.6 for five sites along a topographic gradient, whereas Whittaker's β between different plant communities was found to average 0.93. Comparable data was not found for other desert areas, but comparisons to non-desert areas suggest beta diversity within landscapes is relatively high and is likely to reflect the considerable landform heterogeneity of the Hamersley Ranges. 55∼70% of species were shared between different landscapes of the Hamersley Ranges; comparisons to other regions suggest beta diversity at this scale is relatively low. Gamma diversity, the number of species over large spatial extents, was successfully compared using regression analysis of the log-log species - area relationship. This revealed that the northern Sonoran desert has significantly less species than the Nama (inland) Karoo and Hamersley Ranges over medium spatial extents, but species numbers were similar at a regional scale. Several constraints to the valid comparison of species diversity were identified, including lack of standardisation of sampling techniques, the wide range of measures employed, general lack of published data, and the influence of the various components of spatial scale on most diversity measures. Recommendations on how to improve future comparative work are provided.

Human Impacts on Urban Landscapes in North American Desert: A Case Study in the Phoenix, Arizona, USA (북아메리카 사막 지형에 미친 인류의 영향: 피닉스, 애리조나 지역을 사례로)

  • Jeong, Ara
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.69-85
    • /
    • 2019
  • Humans have been important driver to reconfigure the terrestrial surface of the Earth by altering its morphology and processes. The effect of human activities on the physical landscape, however, shows substantially uneven geographical patterns. Most of anthrogemorphoogical studies regarding human-induced denudation have focused on areas with a long history of human modifications such as humid landscapes, so the hypothesis is naturally a great human impact on landscapes. The effect of human activities on dryland Earth surfaces are far less commonly studied, although erosion is one of major concerns in arid and semi-arid region regarding land and water quality degradation. The urban metropolis of Phoenix, Arizona, USA provides an opportunity to explore the impact of the Anthropocene. The Phoenix metropolitan area rests on classic desert landforms, such as extensive pediments, alluvial fans and sand sheets. Human activities including cattle crazing, wildfire resulting from introduced grass species by human, and recent urbanization processes have impacted these classic desert landforms and altered geomorphic processes. The purpose of this paper, therefore, rests in examining Anthropocene in the geomorphology of the north-central Sonoran Desert. The objectives of this paper are: i) to understand the impact of the Anthropocene on the geomorphological processes and forms through field observations; ii) to quantify the magnitude of human impacts on landscape using a published two-decade long record of erosion dataset and natural background erosion dataset in submitted manuscript at the sprawling edge of the Phoenix metropolitan region; iii) to examine how geomorphic outcome can affect the sustainability of cities through the estimation of sediment yield under the condition of urban sprawl.