• Title/Summary/Keyword: Sonochemiluminescence (SCL)

Search Result 6, Processing Time 0.023 seconds

Sonochemical and Sonophysical Effects in a Downward-Irradiation Sonoreactor (하향 초음파 조사 시스템에서의 초음파 화학적 및 물리적 효과 평가)

  • Kim, Seulgi;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.23-31
    • /
    • 2020
  • The performance of a downward-irradiation sonoreactor was investigated using calorimetry, KI dosimetry, luminol (Sonochemiluminescence, SCL) method, and aluminium foil erosion method as one of the basic steps for the optimal design of downward-irradiation sonoreactors. The applied frequency was 28 kHz and the input electrical power was 280 - 300 W. The liquid height, from the reactor bottom to the transducer module surface, ranged from 1λ (53.6 mm) to 2λ (107.1 mm). For various liquid heights, the magnitude of calorimetric power and the mass of cavitation-generated I3- ion varied significantly. It was found that the additional application of mechanical mixing resulted in higher sonochemical activity, especially in the cavitational active zone, which was induced by violent liquid flow in the reactor. In aluminium foil erosion tests, it was found that less ultrasound energy reached the bottom of the reactor due to the violent liquid flow and no significant sonophysical effect was observed for higher mixing rate conditions (100 and 200 rpm).

The Effect of Distance between Two Transducers on Sonochemical Reactions in Dual Irradiation Systems (이중 초음파 조사 시스템에서 진동부 사이의 거리가 초음파 화학 반응에 미치는 영향)

  • Kim, Eunkyung;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.39-45
    • /
    • 2013
  • Many researchers have studied the effectiveness of ultrasound in chemical and environmental engineering fields including material synthesis, pollutant removal, cleaning, extraction, and disinfection. Acoustic cavitation induced by ultrasound irradiation in aqueous phase can cause various sonophysical and sonochemical reactions without any chemicals. However most of the previous studies focused only on the relationships between ultrasonic conditions and the results of sonochemical reactions in lab-scale sonoreactors. As a results of this, only a few studies have been devoted to design and optimization of industrial scale sonoreactors. In this study, the effect of the distance between two opposite transducer modules on sonochemical reactions was investigated in single and dual irradiation systems (334 kHz) for four distances including 50, 100, 150, and 200 mm using KI dosimetry. It was found that the dual irradiation systems provided higher performance in terms of the zeroth reaction coefficient and the cavitation yield compared to the single irradiation systems. The sonochemiluminescence (SCL) images for the visualization of the cavitation field showed that cavitation active zone was larger and sonochemical reaction intensity was much higher in the dual irradiation system than in the single irradiation system.

Sonochemial and Sonophysical Effects in Heterogeneous Systems (불균일계에서의 초음파 캐비테이션 물리적 및 화학적 효과 연구)

  • Lee, Dukyoung;Son, Younggyu
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.115-122
    • /
    • 2019
  • The objective of this study was to investigate the sonophysical and sonochemical effects induced by acoustic cavitation in heterogeneous systemin a 28 kHz double-bath reactor using calorimetry, the aluminiumfoil erosion test, and the luminol test. With no glass beads, calorimetric power in the inner vessel increased as much as the outer sonoreactor lost and total calorimetric power was maintained for various liquid height conditions (0.5 ~ 7 cm) in the vessel. Higher calorimetric energy was obtained at higher liquid height conditions. Similar results were obtained when glass beads were placed with various beads heights (0.5 ~ 2.0 cm) and relatively high calorimetric energy was obtained in spite of large attenuation in the glass beads layer. An aluminium foil placed between the bottom of the inner vessel and the glass beads layer was damaged, indicating significant sonophysical effects. Much less damage was detected when the foil was placed above the beads layer due to large attenuation of ultrasound. Sonochemical effects, visualized by sonochemiluminescence (SCL), also decreased significantly when the beads were placed in the vessel. It was established that the optimization of the liquid height above the solid-material layer could enhance the sonophysical and sonochemical effects in the double-bath sonoreactors.

Sonochemical Oxidation Reactions in 300 kHz Sonoreactor for Various Liquid Height/Volume Conditions (다양한 액상 수위/부피 조건에서의 300kHz 초음파 캐비테이션 산화반응 분석 연구)

  • Lee, Seongeun;Son, Younggyu
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.5
    • /
    • pp.211-219
    • /
    • 2022
  • In this study, the effect of liquid height/volume on sonochemical oxidation reactions was investigated in 300 kHz sonoreactors. The gas mixture of Ar/O2 (50:50) was applied in two modes including saturation and sparging, and zero-order reaction (KI dosimetry) and first-order reaction (Bisphenol A (BPA) degradation) were used to quantitatively analyze sonochemical oxidation reactions. For the zero-order reaction, the highest sonochemical oxidation activity was obtained for the liquid height of 5𝛌, and the lowest height for both the gas saturation and sparging conditions. In addition, the sparging did not enhance the sonochemical oxidation activity for all height conditions except for 50𝛌, where very low activity was obtained. It was found that in sonochemiluminescence (SCL) images the sonochemical active zone was formed adjacent to the liquid surface for the gas sparging condition due to the formation of the standing wave field while the active zone was formed adjacent to the transducer at the bottom due to the blockage of ultrasound. For the first-order reaction, the highest activity was also obtained at 5𝛌 and the comparison based on the reactant mass was not appropriate because the concentration of the reactant (BPA) decreased significantly as the reaction time elapsed. Consequently, it was revealed that the determination of optimal liquid height (ultrasound irradiation distance) based on the wavelength of the applied ultrasound frequency was very important for the optimal design of sonoreactors in terms of reaction efficiency and reactor size.

The Effect of Liquid Height on Sonochemical Reactions in 74 kHz Sonoreactors (74 kHz 초음파 반응기에서 수위 변화에 따른 초음파 화학 반응의 변화)

  • Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.80-85
    • /
    • 2016
  • Acoustic cavitation can induce various sonochemical effects including pyrolysis and radical reactions and sonophysical effects including microjets and shockwave. In environmental engineering field, ultrasound technology using sonochemical effects can be useful for the removal and mineralization of recalcitrant trace pollutants in aqueous phase as one of emerging advanced oxidation processes (AOPs). In this study, the effect of liquid height, the distance from the transducer to the water surface, on sonochemical oxidation reactions was investigated using KI dosimetry. As the liquid height/volume increased (40~400 mm), the cavitation yield steadily increased even though the power density drastically decreased. It was found that the enhancement at higher liquid height conditions was due to the formation of standing wave field, where cavitation events could stably occur and a large amount of oxidizing radicals such as OH radicals could be continuously provided.

Basic Study on the Design and Optimization of Sonoreactors for Sonochemical Water/Wastewater Treatment Processes (초음파 수처리 공정 개발을 위한 반응기 설계 기초 연구)

  • Kim, Seulgi;Son, Younggyu
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.205-212
    • /
    • 2014
  • Ultrasound technology can be applied in various fields including environmental, energy, and material engineering processes. In this study the effect of liquid height/volume on calorimetric energy and sonochemical oxidation was investigated as one of the basic steps for the design of water/wastereater treatment sonoreactors. The liquid height was increased from 0 to $4{\lambda}$ by $1/4{\lambda}$ and it was found that both calorimetric energy and sonochemical oxidation were significantly increased at relatively high liquid height/volume where the power density was relatively low. The sonochemiluminescence (SCL) images for the visualization of the activity of cavitation also showed that larger and more stable active zone was formed with high SCL intensity at high liquid height/volume. Therefore, it was revealed that sonoreactors for water/wasterwater treatment could be significantly effective in terms of removal efficiency and energy consumption.