• Title/Summary/Keyword: Sonochemical reaction

Search Result 35, Processing Time 0.033 seconds

Sonochemical Reaction Mechanism of a Polycyclic Aromatic Sulfur Hydrocarbon in Aqueous Phase

  • Kim, Il-Kyu;Jung, Oh-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.7
    • /
    • pp.990-994
    • /
    • 2002
  • Hydroxybenzothiophenes, dihydroxy-benzothiophenes, and benzothiophenedione were identified as inter-mediates of benzothiophene (BT) exposed to ultrasonic irradiation. It is proposed that benzothiophene is oxidized by OH radical to sequentially for m hydroxybenzothiophenes, dihydroxybenzothiophenes, and benzothiophenedione. Benzothiophene is decomposed rapidly following pseudo-first-order kinetics in a first-order manner by ultrasonic irradiation in aqueous solution. The toxicity of sonochemically treated solutions was checked by E. coli and a less inhibition in bacterial respiration was observed from the 120-min treated benzothiophene sample than from the untreated benzothiophene sample. Also evolution of carbon dioxide and sulfite was observed during ultrasonic reaction. A pathway for ultrasonic decomposition of benzothiophene in aqueous solution is proposed.

Hydrogen sulfide gas sensing mechanism study of ZnO nanostructure and improvement of sensing property by surface modification

  • Kim, Jae-Hyeon;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.450-450
    • /
    • 2011
  • This study reports the hydrogen sulfide gas sensing properties of ZnO nanorods bundle and the investigation of gas sensing mechanism. Also the improvement of sensing properties was also studied through the application of ZnO heterstructured nanorods. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and ZnO nano-heterostructures were prepared by sonochemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. The gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. In order to improve the gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by deposition of CuO, Au on the ZnO nanorods bundle. These heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with target gas.

  • PDF

Indium and Gallium-Mediated Addition Reactions

  • Lee, Phil-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.17-28
    • /
    • 2007
  • Indium and gallium have emerged as useful metals in organic synthesis as a result of its intriguing chemical properties of reactivity, selectivity, and low toxicity. Although indium belongs to a main metal in group 13, its first ionization potential energy is very low and stable in H2O and O2. Therefore, indium-mediated organic reactions are of our current interest. On the basis of these properties of indium, many efficient indium-mediated organic reactions have been recently developed, such as the addition reactions of allylindium to carbonyl and iminium groups, the indium-mediated synthesis of 2-(2-hydroxyethyl)homoallenylsilanes, the indiummediated allylation of keto esters with allyl halides, sonochemical Reformatsky reaction using indium, the indium-mediated selective introduction of allenyl and propargyl groups at C-4 position of 2-azetidinones, the indium-mediated Michael addition and Hosomi-Sakurai reactions, the indium-mediated β-allylation, β- propargylation and β-allenylation onto α,β-unsaturated ketones, the highly efficient 1,4-addition of 1,3-diesters to conjugated enones by indium and TMSCl, and the intramolecular carboindation reactions. Also, we found gallium-mediated organic reactions such as addition reactions of propargylgallium to carbonyl group and regioselective allylgallation of terminal alkynes.

Preparation and analysis of nickel-coated alumina by sonochemistry (음향화학법으로 니켈을 코팅한 알루미나의 제조 및 분석)

  • Kim, Jin-Woo;Choi, Sung-Woo;Lee, Chang-Seop
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.61-68
    • /
    • 2011
  • Ni-coated alumina was prepared by sonochemical method. To increase an efficiency of Ni coating on alumina, amorphous alumina was prepared by sol-gel method and Ni was coated to fine particles of alumina. Ni-coated alumina was prepared from various calcination temperatures ($500^{\circ}C$, $1,000^{\circ}C$), concentrations of Ni solution (0.01 M~0.2 M) and sonochemical reaction times (30 min, 2h). The prepared fine particles were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), and Particle Size Analyzer (PSA). The coating amount of Ni increased, as Ni concentration and ultrasonication time increased. The maximum amount of Ni was coated to fine particles of alumina, when Ni-coated alumina was prepared with 0.1 M concentration of Ni solution for 2 h of sonication time at $1000^{\circ}C$ of calcination temperature. The average particle size was in the range of 835.9 to 986.7 nm.

Efficiency comparison of advanced oxidation processes for ciprofloxacin removal from aqueous solutions: Sonochemical, sono-nano-chemical and sono-nano-chemical/persulfate processes

  • Igwegbe, Chinenye Adaobi;Ahmadi, Shahin;Rahdar, Somayeh;Ramazani, Alireza;Mollazehi, Abdol Raufeh
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.178-185
    • /
    • 2020
  • The aim of this study is to investigate the degradation of ciprofloxacin (CIP) from its aqueous solutions via different advanced oxidation processes (AOP). The effects of persulfate (PS) concentration, pH, zinc oxide nanoparticles (ZnO-NPs) dose, initial CIP concentration, and reaction time on the degradation of CIP were studied. It was found that the sonochemical (US) degradation is a less efficient process (with removal efficiency of 36%) compared to the sono-nano-chemical (US/ZnO) process which resulted in removal efficiency of 70%. Maximum removal of 99% was obtained using the sono-nano-chemical/PS (US/ZnO/PS) process at a frequency of 60 kHz, time of 10 min, pH of 7, initial CIP concentration of 25 mg/L, and PS concentration of 476.06 mg/L. The addition of PS and ZnO-NPs to the process enhanced the rate of US degradation of CIP. In addition, the kinetic parameters for the US/ZnO/PS process were obtained by fitting the kinetic data into the pseudo-first-order and pseudo-second-order kinetic models. The kinetic data was found to fit into the pseudo-first-order kinetic model than the pseudo-second-order model. The results showed that the AOP using US/ZnO/PS is a promising technique for the treatment of ciprofloxacin containing solutions.

폴리에스테르 바니시에서 나노 실리카의 분산성 향상과 나노 복합체 에나멜 와이어 개발

  • Kim, Yong-Beom;Kim, Eun-Jin;Kim, Seon-Jae;Hwang, Jong-Seon;Choe, Yong-Seong;Seo, Yeong-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.151-151
    • /
    • 2009
  • A enameled wire may have better corona-resistance when its coating material contains nano-sized inorganic particles. However, industrial applications are still limited because an aggregation between nanofillers may happen during coating processes. In this study we use a novel scheme of surface modification with silane on silica nanoparticles using sonochemical reaction where composition and surface density of silanes can be controlled in order to reduce particle-particle attractive interaction. Functionalized nanoparticles are evenly dispersed in the matrix confirmed by SEM and energy dispersive x-ray analysis. Dielectric strength and thermal resistance of the nanocomposite wires are improved while flexibility of the wire maintains.

  • PDF

Size Control of Silicone Particles Using Sonochemical Approaches

  • Jhung, Sung-Hwa;Yoo, Ki-Cheon;Hwang, Young-Kyu;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2401-2404
    • /
    • 2007
  • Particle size of silicones can be controlled by changing the reaction conditions such as temperature and concentrations of water and tetramethoxysilane (TMOS). Alternatively, the use of ultrasound radiation is also an elegant technique to decrease the particle size. Small silicone particles can be obtained at low temperature from diluted reagent containing TMOS, especially under the powerful ultrasound radiation. The size control may be explained by the rate of particle growth rather than that of nucleation.

Synthesis, Structural Characterization, and Catalytic Activity of Flower Like ZnO Nanostructures

  • Ramachandran, K.;Kumar, G. Gnana;Kim, Ae Rhan;Yoo, Dong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1091-1097
    • /
    • 2014
  • Tageteserecta flower like zinc oxide nanostructures composed of hexagonal nanorods were synthesized via sonochemical method at room temperature. The synthesized nanomaterials exhibited wurtzite hexagonal phase structure with the single crystalline nature. The diameter of the individual nanorods that constitute the flower shaped zinc oxide structures is in the range of 120-160 nm. The sonication time effectively determined the morphological properties of the prepared materials. The catalytic activity of prepared zinc oxide nanostructures towards N-formylation reactions were evaluated without any surface modification and the nanostructures exhibited good reaction yield with the prompt recyclability behavior.

Syntheses of Disubstituted Polysilanes (Ⅱ): Sonochemical Study (폴리실란의 합성 (Ⅱ): 초음파 화학적 연구)

  • 이규환;전태하
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.1
    • /
    • pp.28-42
    • /
    • 1999
  • Polysilanes with sterically bulky substituents, -[2-( $R^1R^2$-phenyl)propyl]Si[$R^3$]-, such as poly(2-phenylpropyl)(n-hexyl)silane [$R^1=R^2$=H, $R^3$=n-hexyl] were prepared by Wurtz-type coupling reactions with Na using a sonochemical method. The high-intensity ultrasound provided the formation of high quality Na dispersion in toluene and its active surface which was important for the synthesis of polysilanes in Wurtz-type coupling reaction was freshly and continuously regenerated during the process. The polysilanes products were mixtures of high molecular weight polymers with $\={M}_W$ of ∼$10^6$ and low molecular weight polymers with $\={M}_W$ of ∼$10^3$. It was found that the formation of high molecular weight polymerr was greatly influenced by the substituents $R^3$, directly attached to Si. On the contrary, changes on substituents ($R^1, R^2$) gave no influences at all. Overall yields for polysilanes were 75-99% in general but high molecular weight polysilanes were obtained as a major product when substituent $R^3$ is n-hexyl group and low molecular weight polysilanes were obtained as a major product when substituent $R^3$ is cyclohexyl and 2-phenylethyl groups. Effects of reaction conditions to polysilane yields were investigated.

  • PDF

Sonochemical Synthesis of $PbMoO_4$ Nanoparticles and Evaluation of its Photocatalytic Activity

  • Uresti, Diana B. Hernandez;De la Cruz, Azael Martinez;Martinez, Leticia M. Torres;Lee, Soo-Wohn
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.49.2-49.2
    • /
    • 2011
  • $PbMoO_4$ nanoparticles were successfully obtained in the presence of ethylene glycol (EG) with the assistance of a prolonged sonication process. The nanoparticles were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and adsorption-desorption $N_2$ isotherms (BET). The catalyst prepared sonochemically showed higher photocatalytic activity than $PbMoO_4$ prepared by solid-state reaction in the degradation reactions of rhodamine B (rhB), indigo carmine (IC), orange G (OG), and methyl orange (MO) under UV-Vis light radiation. In order to elucidate aspects of the degradation mechanism of the organic dyes, some experimental variables were modified such as pH, $O_2$ level in solution, and radiation source. In general, the photocatalytic activity for the degradation of organic dyes followed the sequence IC>OG>rhB>MO.

  • PDF