• Title/Summary/Keyword: Sonic energy

Search Result 53, Processing Time 0.037 seconds

Spray Characteristics of Internal-Mixing Twin-Fluid Atomizer using Sonic Energy (음향에너지를 이용한 내부 혼합형 이유체 분사노즐의 분무특성)

  • Cho, H.K.;Kang, W.S.;Seok, J.K.;Lee, G.S.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.32-41
    • /
    • 1999
  • In this research, internal-mixing twin-fluid atomizer using sonic energy is designed and manufactured. We are trying to intimate high efficiency twin-fluid atomizer to obtain good liquid atomization in the low pressure region. Define of geometric form of atomizer, characteristics of spray is influenced by position, depth and height variation of cavity resonator, variation of sound intensity and resonant sound frequency with liquid flow rate. The liquid atomization is promoted by multi-stage disintegration of mixing flow of gas with liquid and the optimum condition of position and depth of cavity resonator according to sonic energy is obtained from the condition at a=2.5mm and L=2mm. The velocity distribution of droplets shows negative value due to recirculation region at the center of axial, and as the radial direction distance is far, the velocity distribution of droplets decrease slowly after having a maximum value. However velocity and SMD show nearly uniform distribution at the down stream and as result compared to Nukiyama and Tanasawa's equation. atomization of mixing flow with air and liquid dispersing from the outlet of the nozzle is promoted by the effect of collision at the cavity resonator.

  • PDF

Development of non-destructive testing method to evaluate the bond quality of reinforced concrete beam

  • Saleem, Muhammad;Almakhayitah, Abdulmalik Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.313-323
    • /
    • 2020
  • Non-destructive tests are commonly used in construction industry to access the quality and strength of concrete. However, till date there is no non-destructive testing method that can be adopted to evaluate the bond condition of reinforced concrete beams. In this regard, the presented research work details the use of ultra-sonic pulse velocity test method to evaluate the bond condition of reinforced concrete beam. A detailed experimental research was conducted by testing four identical reinforced concrete beam samples. The samples were loaded in equal increments till failure and ultra-sonic pulse velocity readings were recorded along the length of the beam element. It was observed from experimentation that as the cracks developed in the sample, the ultra-sonic wave velocity reduced for the same path length. This reduction in wave velocity was used to identify the initiation, development and propagation of internal micro-cracks along the length of reinforcement. Using the developed experimental methodology, researchers were able to identify weak spots in bond along the length of the specimen. The proposed method can be adopted by engineers to access the quality of bond for steel reinforcement in beam members. This allows engineers to carryout localized repairs thereby resulting in reduction of time, cost and labor needed for strengthening. Furthermore, the methodology to apply the proposed technique in real-world along with various challenges associated with its application have also been highlighted.

DEFECT DETECTION WITHIN A PIPE USING ULTRASOUND EXCITED THERMOGRAPHY

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.637-646
    • /
    • 2007
  • An UET (ultrasound excited thermography) has been used for several years for a remote non-destructive testing in the automotive and aircraft industry. It provides a thermo sonic image for a defect detection. A thermograhy is based On a propagation and a reflection of a thermal wave, which is launched from the surface into the inspected sample by an absorption of a modulated radiation. For an energy deposition to a sample, the UET uses an ultrasound excited vibration energy as an internal heat source. In this paper the applicability of the UET for a realtime defect detection is described. Measurements were performed on two kinds of pipes made from a copper and a CFRP material. In the interior of the CFRP pipe (70mm diameter), a groove (width - 6mm, depth - 2.7mm, and length - 70mm) was engraved by a milling. In the case of the copper pipe, a defect was made with a groove (width - 2mm, depth - 1mm, and length - 110 mm) by the same method. An ultrasonic vibration energy of a pulsed type is injected into the exterior side of the pipe. A hot spot, which is a small area around the defect was considerably heated up when compared to the other intact areas, was observed. A test On a damaged copper pipe produced a thermo sonic image, which was an excellent image contrast when compared to a CFRP pipe. Test on a CFRP pipe with a subsurface defect revealed a thermo sonic image at the groove position which was a relatively weak contrast.

A study on the langevin type vibrators (란쥬반형진동자에 관한 연구)

  • 박정엽;한득영;박태곤
    • 전기의세계
    • /
    • v.30 no.1
    • /
    • pp.47-54
    • /
    • 1981
  • The fabrication of Langevin type vibrators producing relatively high sonic and ultrasonic energy is described. The dependence of the acoustic output and the frequency characteristics on the thickness of the steel plates and the pressure at the ceramics are investigated. As results, the acoustic output of Langevin type vibrators are relatively high, and the resonant frequency is decreassed by thickening the steel plates and lowering the pressure at the ceramics. Using these results, sonic and ultrasonic vibrator whose resonant frequency is determined can be designed.

  • PDF

Effect of pH on Successive Foam and Sonic Droplet Fractionation of a Bromelain-invertase Mixture

  • Ko Samuel;Prokop Ales;Tanner Robert D.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.26-30
    • /
    • 2002
  • A droplet fractionation method was previously developed to concentrate a dilute nonfoaming protein solution. In that earlier study with invertase, it was demonstrated that droplets created by ultrasonic energy waves could be enriched up to 8 times that of the initial dilute invertase solution. In this study, a mixture of bromelain (a foaming protein) and invertase (a nonfoaming protein) is investigated as a preliminary step to determine if droplet fractionation can also be used to separate a non-foaming protein from foaming proteins. The foaming mixture containing bromelain is first removed by bubbling the binary mixture with air. After the foam is removed, the protein rich air-water interfacial layer is skimmed off (prior to droplet fractionation) so as not to interfere with the subsequent droplet production from the remaining bulk liquid, rich in non-foaming protein. Finally, sonic energy waves are then applied to this residual bulk liquid to recover droplets containing the non-foaming protein, presumed to be invertase. The primary control variable used in this droplet fractionation process is the pH, which ranged for separate experiments between 2 and 9. It was observed that the maximum overall protein partition coefficients of 5 and 4 were achieved at pH 2 and 4, respectively, for the initial foaming experiment followed by the post foaming droplet fractionation experiment.

NutriSonic web expert system for meal management and nutrition counseling with nutrient time-series analysis, e-food exchange and easy data transition

  • Hong, Soon-Myung;Cho, Jee-Ye;Lee, Jin-Hee;Kim, Gon;Kim, Min-Chan
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.121-129
    • /
    • 2008
  • This study was conducted to develop the NutriSonic Web Expert System for Meal Management and Nutrition Counseling with Analysis of User's Nutritive Changes of selected days and food exchange information with easy data transition. This program manipulates a food, menu and meal and search database that has been developed. Also, the system provides a function to check the user's nutritive change of selected days. Users can select a recommended general and therapeutic menu using this system. NutriSonic can analyze nutrients and e-food exchange ("e" means the food exchange data base calculated by a computer program) in menus and meals. The expert can insert and store a meal database and generate the synthetic information of age, sex and therapeutic purpose of disease. With investigation and analysis of the user's needs, the meal planning program on the internet has been continuously developed. Users are able to follow up their nutritive changes with nutrient information and ratio of 3 major energy nutrients. Also, users can download another data format like Excel files (.xls) for analysis and verify their nutrient time-series analysis. The results of analysis are presented quickly and accurately. Therefore it can be used by not only usual people, but also by dietitians and nutritionists who take charge of making a menu and experts in the field of food and nutrition. It is expected that the NutriSonic Web Expert System can be useful for nutrition education, nutrition counseling and expert meal management.

Theoretical Analysis of Heat Transport Limitation in a Screen Mesh Wick Heat Pipe

  • Lee, Ki-Woo;Park, Ki-Ho;Lee, Wook-Hyun;Rhi, Seok-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The purpose of the present study is to examine the heat transport limitations in a screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6mm, and mesh numbers were 50, 100, 150, 200 and 250, and water was investigated as working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, the maximum heat transport limitations by capillary, entraintment, sonic and boiling were analyzed by a theoretical design method of heat pipe, including capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, etc. Based on the results, the capillary limitation in a small diameter of heat pipe is largely affected by mesh number and wick layer. Mesh number of 250 is desirable not to be used in pipe diameter of 6 mm, because capillary heat transport limitation decreases by the abrupt increase of liquid friction pressure due to the small liquid flow area. For the heat transport of 15 watt in 6mm diameter pipe, mesh number of 100 and one layer is an optimum wick condition, which thermal resistance is the smallest.

Analysis of Attenuation Differences According to Radiolucent and Radiopague Materials : Based on DECT (Dual Energy Computed Tomography) (방사선 투과 및 불투과성 물질에 따른 감약 차이의 분석 : DECT 검사 중심으로)

  • Jang, Hyon-Chol;Kim, Yoon-Shin;Kim, Hyeon-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1584-1589
    • /
    • 2014
  • This study analyzed CT values of radiolucent and radiopaque materials by energy region after selecting radiolucent and radiopaque materials at random using GE's DECT((Dual Energy Com-puted Tomography) at S University Hospital located in Gyeonggi-province from July through August in 2013. Besides, it drew out the most analogous energy region to the value of 120kVp CT, which is applied to existing SECT(Single Energy Computed Tomography), by utilizing the analysis method of CT values and tried to find out the most useful and appropriate materials when contrast was applied within visible area in clinical application. As a result, there was little decrease of CT value after 90KeV in the case of materials with low density and high moisture content such as normal saline, methyl-cellulose and gels used in ultra-sonic waves test; energy does not influence much on materials with extremely low or high density such as air and contrast medium; methyl-cellulose and gels used in ultra-sonic waves test are considered to be the most useful materials for clinical applications.