• 제목/요약/키워드: Sonic Jet

검색결과 60건 처리시간 0.023초

초음속 이중동축 스월제트 유동특성에 관한 연구 (Study of Supersonic, Dual, Coaxial, Swirl Jet)

  • 김중배;김희동;이권희;세토구치
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1771-1776
    • /
    • 2003
  • The supersonic swirl jet is being extensively used in many diverse fields of industrial processes since those lead to more improved performance, compared with the conventional supersonic no swirl jet. In the present study, an experiment is carried out to investigate the effect of annular swirl jet on the supersonic dual coaxial jet. A convergent-divergent nozzle with a design Mach number of 1.5 is used for the supersonic primary jet, and the sonic nozzles with four tangential inlets are used to make the secondary swirl jet. The primary jet pressure ratio is varied in the range from 3.0 to 7.0 and the outer annular jet pressure ratio is from 1.0 to 4.0. The interactions between the annular swirl and the inner supersonic jet are quantified by the pitot impact and static pressure measurements and visualized by using the Schlieren optical method. The results show that annular swirl jet alters the shock structure and impact pressure distributions compared with no swirl jet.

  • PDF

마이크로 제트를 이용한 과소팽창 음속 제트에서의 소음저감 (Noise Reduction of an Underexpanded Supersonic Jet via Steady Blowing with Microjets)

  • 김진화;김정훈;유정열
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1472-1479
    • /
    • 2003
  • An attempt to reduce supersonic jet noise is carried out by using two steady microjets in a round jet. The jet is issued from a round sonic nozzle with an exit diameter of 10 mm. Two micro-nozzles with an inside diameter of 1 mm each are installed on the exit plane at an angle of 45 relative to the main jet axis. Far-field noise was measured at 40 diameters off the jet axis. The angle between a microphone and the jet axis is 30 or 90$^{\circ}$. For an injection rate of 4-6% of the main jet, screech tones were completely suppressed by the microjets. The reduction in the overall sound pressure levels were 2.4 and 2.7 dB for 90 and 30 measuring directions, respectively. However, the enhancement of mixing/spreading of the jet by the microjet was negligible. The reduction of noise is probably due to distorted shock cell structures and/or deformed large scale vortical structures by the microjets.

소형제트를 이용한 과소팽창 음속 제트에서의 소음저감 (Noise Reduction of a Underexpanded Supersonic Jet via Steady Blowing with Microjets)

  • 김진화;김정훈;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.747-750
    • /
    • 2002
  • An attempt to reduce supersonic Jet noise is carried out by using two steady microjets in a round jet. The jet is issued from a round sonic nozzle with an exit diameter of 10mm. Two micro-nozzles with an inside diameter of 1mm each are installed on the exit plane with an off-axis angle of $45^{\circ}$. Far-field noise was measured at a location 40 diameters off the jet axis. The angles between a microphone and the jet axis are $45^{\circ}\;and\;90^{\circ}$. For an injection rate less than $1{\%}$ of the main jet, screech tones were completely suppressed by the microjets. The reduction in the ovelall sound pressure levels were $2.4\;and\;2.7\;dB\;for\;90^{\circ}\;and\;45^{\circ}$ directions, respectively. The enhancement of mixing/spreading of the jet by the microjet was negligible. The reduction of noise is probably due to distorted shock cell structures and/or broken large scale vortical structures by the microjets.

  • PDF

An Experimental Study of Supersonic Dual Coaxial Free Jet

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Lee, Byeong-Eun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.2107-2115
    • /
    • 2003
  • A supersonic dual coaxial jet has been employed popularly for various industrial purposes, such as gasdynamic laser, supersonic ejector, noise control and enhancement of mixing. Detailed characteristics of supersonic dual coaxial jets issuing from an inner supersonic nozzle and outer sonic nozzles with various ejection angles are experimentally investigated. Three important parameters, such as pressure ratios of the inner and outer nozzles, and outer nozzle ejection angle, are chosen for a better understanding of jet structures in the present study. The results obtained from the present experimental study show that the Mach disk diameter becomes smaller, and the Mach disk moves toward the nozzle exit, and the length of the first shock cell decreases with the pressure ratio of the outer nozzle. It was also found that the highly underexpanded outer jet produces a new oblique shock wave, which makes jet structure much more complicated. On the other hand the outer jet ejection angle affects the structure of the inner jet structure less than the pressure ratio of the outer nozzle, relatively.

초음속 불완전 팽창 난류 제트 유동에 관한 수치적 연구 (Numerical Analysis for Under- or Over- Expanded Supersonic Turbulence Jet Flow)

  • 김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.85-89
    • /
    • 1999
  • Numerical Analysis has been done for the supersonic off-design jet flow due to the pressure difference between the jet and the ambient fluid. The difference of pressure generates an oblique shock or an expansion wave at the nozzle exit, The waves reflect repeatedly at the center axis and on the sonic surface in the shear layer, and the pressure difference is resolved across these waves interacted with the turbulence mixing layer. In this paper, the axi-symmetric Navier-Stokes equation has been used with two equation $k-{\varepsilon}$ turbulence closure model. The second order TVD scheme with flux limiters, based on the flux vector split by the smooth eigenvalue split, has been used to capture internal shocks and other discontinuities. The correction term for the compressible flow and the damping function are used in the turbulence model. Numerical calculations have been done to analyze the off-design jet flow due to the pressure difference. The variation of pressure along the flow axis is compared with an experimental result and other numerical result. The characteristics of the interaction between the shock cell and the turbulence mixing layer have been analyzed.

  • PDF

Heat Transfer Characteristic of Axisymmetric Under-expanded Impinging Jet on a Flat Surface

  • M. S. Yu;Kim, B. B.;H. H Cho;K. Y. Hwang;J. C. Bae
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.795-801
    • /
    • 2004
  • An experimental study has been carried out to examine heat-transfer characteristics of an axisymmetric, under-expanded, sonic jet impinging on a flat plate and the local measurement of surface pressures and heat transfer coefficients on a plate have been achieved together with a visualization test of shock structure in a jet. As a result, it has been found that the Nusselt number distribution has different aspects depending on the under-expansion ratios and the nozzle-to-plate distances.

  • PDF

노즐 중심에 설치한 마이크로 제트에 의한 충격파 관련소음 저감 (Shock Associated Jet Noise Reduction by a Microjet on the Centerline of the Main Jet)

  • 김진화;유정열
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.92-97
    • /
    • 2003
  • By using a centerbody injection, an effort to reduce shock assoicated noise is made in an underexpanded sonic nozzle with an exit diameter of 10mm. The centerbody or micro nozzle, aligned with the axis of the main jet has an o.d. of 2mm and i.d. of 1.5mm. When measured at 90$^{\circ}$ relative to the main jet the farfield noise spectra showed that the screech tones and broadband shock associated noise can be significantly reduced simply by varying the length of the centerbody and/or mass fraction of the microjet. The maximum reduction in overall sound pressure level (OASPL) was as much as 9 and 4 ㏈ at fully expanded jet Mach numbers Mi of 1.3 and 1.5, respectively, when the length of the centerbody was varied from 0 to 4 main nozzle diameters without blowing. With the aid of the blowing, the maximum reduction in OASPL increased to 12 and 7 ㏈ at M$\sub$j/=1.3 and 1.5, respectively. The impact pressure field in the main jet plume strongly suggested that the reduced periodic pressure distribution in the shear layers and/or centerline is responsible for the reduced screech and broadband shock associated noise. Therefore, the steady blowing by a micro centerbody is a promising technique for shock noise reduction in a supersonic jet.

  • PDF

PSP를 이용한 Cavity 후류의 전역적 압력분포 측정 (The Whole Region Pressure Measurement of Cavity Downstream using PSP Technique)

  • 김기수;전영진;서형석;변영환;이재우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.317-321
    • /
    • 2007
  • PSP는 Pressure Sensitive Paint의 약자로 대기중의 산소량을 측정하여 전역적인 압력정보를 광학적으로 측정 할 수 있다. 본 연구에서는 PSP를 사용하여 jet injection 후류의 표면압력 분포를 알아보았다. 또한 Jet injection 5mm앞에 종횡비 1에서 4까지의 사각형 Cavity를 위치시켜 후류에 미치는 영향을 알아보았다. Jet injection 후류의 압력 분포는 Cavity의 전단층의 영향으로 Cavity가 없을 때와 비교해서 옆으로 넓게 퍼지면서 강도는 약해지는 모습을 보인다. 또한 Cavity의 종횡비가 커짐에 따라서 전단층의 크기가 커지고 그 영향이 커졌다. 측정된 압력은 압력공의 결과, CFD의 결과와 비교하였으며 근접한 값을 보였다.

  • PDF

음속 이차유동 분출시 나타나는 초음속 노즐 내부 유동장에 관한 연구 (Study of Flowfield of the Interaction of Secondary Sonic Jet into a Supersonic Nozzle)

  • 고현;이열;윤웅섭
    • 한국추진공학회지
    • /
    • 제7권3호
    • /
    • pp.45-52
    • /
    • 2003
  • 원추형 초음속 노즐 확산부에 이차유동이 음속으로 분출될 때 나타나는 노즐 내부 유동장에 대한 수치적 연구가 이루어졌다. 대수-난류모델과 $\kappa$-$\varepsilon$ 모델을 사용한 레이놀즈-평균 Navier-Stokes 방정식을 계산함으로서 노즐 내부에서 나타나는 충격파와 경계층의 간섭에 의한 3 차원 유동장을 해석하였다. 얻어진 수치해석의 결과는 동일한 조건에서 수행된 실험결과와 잘 일치하고 있음이 판명되었다. 이차유동의 분출압력 변화가 충격파와 경계층의 간섭과 함께 노즐내부 유동장 구조에 미치는 영향을 평가하였다. 아울러 충격파 간섭 후방에서 나타나는 와류유동 구조와 벽면 압력분포에 관한 정보를 얻었다.

초음속 유동장에서의 충돌제트 특성에 대한 실험적 연구 (An experimental study on the characteristics of transverse jet into a supersonic flow field)

  • 박종호;김경련;신필권;박순종;길경섭
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.124-131
    • /
    • 2003
  • When a secondary gaseous flow is injected vertically into a supersonic flow through circular nozzle, a complicated structure of flow field is produced around the injection area. The interaction between the two streams produces a strong bow shock wane on the upstream side of the side-jet. The results show that bow shock wave and turbulent boundary layer interaction induces the boundary layer separation in front of the side-jet. This study is to analyze the structure of flow fields and distribution of surface pressure on the flat plate according to total pressure ratio using a supersonic cold-flow system and also to study the control force of affected side-jet. The nozzle of main flow was designed to have Mach 2.88 at the exit. The injector has a sonic nozzle with 4mm diameter at the exit of the side-jet. In experiments, The oil flow visualization using a silicone oil and ink was conducted in order to analyze the structure of flow fields around the side-jet. The flow fields are visualized using the schlieren method. In this study, a computational fluid dynamic solution is also compared with experimental results.