• Title/Summary/Keyword: Song mode

Search Result 1,050, Processing Time 0.032 seconds

An Experimental Study on Mechanism of Combustion Frequencies in Model Combustor with V-gutter type Flameholder (V-gutter형 보염기를 장착한 모델 연소기 내의 연소 주파수 발생 메커니즘 연구)

  • Song, Jin-Kwan;Hwang, Jeong-Jae;Song, Jae-Cheon;Yoon, Young-Bin;Lee, Jong-Guen
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.277-280
    • /
    • 2009
  • Mechanism of combustion frequencies occurring during combustion is experimentally investigated in model combustor with V-gutter flameholder. this combustor has a long duct shape with a cross section area of $40{\times}40\;mm$. The v-gutter type flameholder with 14mm width is mounted at the bottom of combustor. Kerosene and methane were used as fuel, and these fuel were injected transversely into air crossflow. It is found that combustion frequencies were considered as 1L longitudinal mode caused by combustor geometry and vortex shedding mode of flameholder. And fuel phase effect and nozzle effect were also observed in the low frequency range.

  • PDF

Ionic Compositions of PM10 and PM2.5 Related to Meteorological Conditions at the Gosan Site, Jeju Island from 2013 to 2015

  • Song, Jung-Min;Bu, Jun-Oh;Lee, Jae-Yun;Kim, Won-Hyung;Kang, Chang-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.313-321
    • /
    • 2017
  • $PM_{10}$ and $PM_{2.5}$ were collected at the Gosan Site on Jeju Island from 2013 to 2015, and their ionic and elemental species were analyzed to examine the variations in their chemical compositional characteristics related to different meteorological conditions. Concentrations of nss-$SO_4{^{2-}}$ and $NH_4{^+}$ were respectively 6.5 and 4.7 times higher in the fine particle mode ($PM_{2.5}$) compared to the coarse particle mode ($PM_{10-2.5}$), however $NO_3{^-}$ concentrations were 2.4 times higher in the coarse mode compared to the fine particle mode. During Asian dust days, the concentrations of nss-$Ca^{2+}$ and $NO_3{^-}$ increased to 8.2 and 5.0 times higher in $PM_{10}$, and 3.5 and 6.0 times higher in $PM_{2.5}$, respectively. During haze days, the concentrations of secondary pollutants increased by 3.1-4.7 and 3.2-7.9 in $PM_{10}$ and $PM_{2.5}$, respectively, and they were, respectively, 1.2-2.1 and 0.9-2.1 times higher on mist days. The aerosols were acidified largely by sulfuric and nitric acids, and neutralized mainly by ammonia in the fine particle mode during the haze days, but neutralized by calcium carbonate in coarse particle mode during the Asian dust days. Clustered back trajectory analysis showed that concentrations of nss-$SO_4{^{2-}}$, $NO_3{^-}$, and $NH_4{^+}$ were relatively high when air masses travelled from China.

Influence of structural system measures on the dynamic characteristics of a multi-span cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Xie, Hongen;Song, Jianyong;Li, Wanheng
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.51-73
    • /
    • 2014
  • A three-dimensional finite element model for the Jiashao Bridge, the longest multi-span cable-stayed bridge in the world, is established using the commercial software package ANSYS. Dynamic characteristics of the bridge are analyzed and the effects of structural system measures including the rigid hinge, auxiliary piers and longitudinal constraints between the girders and side towers on the dynamic properties including modal frequency, mode shape and effective mass are studied by referring to the Jiashao Bridge. The analysis results reveal that: (i) the installation of the rigid hinge significantly reduces the modal frequency of the first symmetric lateral bending mode of bridge deck. Moreover, the rigid hinge significantly changes the mode shape and effective mass of the first symmetric torsional mode of bridge deck; (ii) the layout of the auxiliary piers in the side-spans has a limited effect on changing the modal frequencies, mode shapes and effective masses of global vibration modes; (iii) the employment of the longitudinal constraints significantly increases the modal frequencies of the vertical bending modes and lateral bending modes of bridge deck and have significant effects on changing the mode shapes of vertical bending modes and lateral bending modes of bridge deck. Moreover, the effective mass of the first anti-symmetric vertical bending of bridge deck in the longitudinal direction of the fully floating system is significantly larger than that of the partially constrained system and fully constrained system. The results obtained indicate that the structural system measures of the multi-span cable-stayed bridge have a great effect on the dynamic properties, which deserves special attention for seismic design and wind-resistant design of the multi-span cable-stayed bridge.

Influence of Blend Mode of Extender Oil on the Properties of EPDM/PP-Based Thermoplastic Vulcanizates (이피디엠/폴리프로필렌 열가소성 경화물에서 오일의 블렌드 방식이 경화물의 물성에 미치는 영향)

  • Na, Sung-Su;Song, Ki-Chan;Kim, Su-Kyung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.315-322
    • /
    • 2009
  • Influence of blend mode of extender oil on the properties of thermoplastic vulcanizates (TPVs), based on an ethylene-propylene-diene copolymer (EPDM) and a polypropylene (PP), was studied. The EPDM/PP TPVs were prepared in an open roll mill using two different modes in blending sequence of paraffinic oil and phenolic curative, i.e., Oil-Cure and Cure-Oil modes. Degree of cross-linking by gel fraction and properties such as hardness, tensile strength, elongation at break, and melt flow rate were investigated as a function of extender oil content for the two modes. Little influence of the blend mode of extender oil on the degree of cross-linking and mechanical behaviors was observed. However, the use of Cure-Oil mode in the preparation of EPDM/PP TPVs resulted in a marked increase in the level of processability as reflected by melt flow index, as compared to the use of Oil-Cure mode.

TEMPERATURE CHANGES OF IMPLANT SURFACE IN SECOND STAGE SURGERY WITH DETAL LASER : IN VITRO STUDY (레이저를 이용한 임프란트 이차수술시 온도변화에 관한 실험적 연구)

  • Ahn, Hyun-Jeong;Kim, Hyoun-Chull;Choi, Byeong-Gap;Song, Eon-Hee;Kim, Rae-Gyoung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.256-268
    • /
    • 1999
  • Submerged implants require secondary surgical uncovering of implants after healing period of 3-6 months. In surgical methods, there are surgical scalpel, tissue punch, electro-surgical, and laser-used uncovering, and so forth The objectives of this study are investigation and assessment of 1) thermal change in clinical application for uncovering of HA-coated implant and pure titanium implant irradiated by pulsed Nd-YAG, $CO_2$, and Er-YAG laser. 2) surface change of cover screws aaer irradiation using laser energy. The temperature of apex & side wall of implants were recorded at 10sec, 20sec, 30sec after 30sec irradiation to implant healing screw; 1) pulsed Nd-YAG laser; 2W, 20pps, contact mode 2) $CO_2$ laser; water-infused & non-water infused state, 2.5-3.5W, contibuous mode, noncontact mode 3) $CO_2$ laser ; non-water infused state, 3W, superpulse, noncontact. mode 4) Er-YAG laser; (1) non-water infused state, 10pps, 60mj, contact mode (2) water-infused state, 10pps, 60mj, 80mj, 101mj, contact mode. According to the results of this study, pulsed Nd-YAG laser is not indicated because of increased thermal change and pitting of metal surface of implant cover screw. By contrast, $CO_2$ laser & Er-YAG laser are presumed to indicate because of narrow range of thermal change & near abscence of thermal damage of metal surface. Dental laser is thought to be much helpful to surgical procedure when it is used as optimal power and time condition considering characteristics and indications of each laser. Further research is needed to verify that these techniques are safe and beneficial to implant success.

  • PDF

Design of Sliding Mode Observer for Solar Array Current Estimation in the Grid-Connected Photovoltaic System (계통연계형 태양광 발전시스템의 태양전지 전류 추정을 위한 슬라이딩 모드 관측기 설계)

  • Kim IL-Song;Baik In-Cheol;Youn Myung-Joong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.411-419
    • /
    • 2005
  • In this paper, a sliding mode observer for solar array current estimation in the photovoltaic power generation system is presented. The solar array current estimation Information is obtained from the sliding mode observer and fed into the maximum power point tracker to update the reference voltage. The parameter values such as inverter dc link capacitances cm be changed up to 50$\%$ from their nominal values and the linear observer can't estimate the correct state values under the parameter variations and noisy environments. The configuration of sliding mode observer is simple, but it shows the robust tracking performance against parameter variations and modeling uncertainties. In this paper, the method for constructing the sliding mode observer using equivalent control input is presented and the convergence of the proposed observer is verified by the Lyapunov method. The mathematical modeling and the experimental results verify the validity of the proposed method.

Experimental Study on Mode-I Energy Release Rate of Polypropylene Adhesive Layer Manufactured by Microwave Composite Forming Process (마이크로파 복합재 성형 공정을 이용한 폴리프로필렌 접착층의 모드 I 에너지 해방률에 대한 실험적 연구)

  • Park, E.T.;Kim, T.J.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Recently, the composite material market is gradually growing. Various composite forming processes have been developed in order to reduce the production cost of the composite material. Unlike the conventional forming process, the microwave composite forming process has the advantage of reducing the processing time because the composite material is heated directly or indirectly at the same time. Due to this advantage, in this study, a double cantilever beam test was conducted with specimens manufactured by the microwave composite forming process. The purpose of this study was to compare mode-I energy release rate for specimens manufactured by prepreg compression forming and microwave composite forming processes. First, a microwave oven was proposed to conduct the microwave composite forming process. Double cantilever beam specimens were manufactured. After that, the double cantilever beam test was conducted to obtain the mode-I energy release rate. Mode-I energy release rates of specimens manufactured by the microwave composite forming and prepreg compression forming processes were then compared. As a result, mode-I energy release rates of specimens fabricated by the microwave composite forming process were similar to those fabricated with the prepreg compression forming process with a relatively reduced process time.

Development of Automatic Terrain Following Simulator Using Digital Terrain Elevation Data (디지털 지형 고도 데이터를 이용한 자동 지형 추종 시뮬레이터 개발)

  • Jisu Lee;MunGyou Yoo;Hyunju Lee;Ki Hoon Song;Dong-Ik Cheon;Sangchul Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.88-98
    • /
    • 2024
  • In this paper, an Automatic Terrain Following (ATF) Simulator using Digital Terrain Elevation Data (DTED) was proposed. This ATF Simulator consists of a Flight Simulator, a Radar Simulator, and a Terrain Following Computer (TFC) Simulator. DTED and radar scan data generated with DTED were used as the terrain information necessary for terrain following. The ATF Simulator provides three modes of operation: a passive mode that uses DTED, an active mode that uses radar scan data, and a hybrid mode that uses both. We developed an ATF Simulator that could reduce the cost and time required to develop a terrain following system using the LabVIEW development environment and the MATLAB App Designer development environment. It was verified by confirming that the ATF Simulator met all functional requirements.