최근 딥 러닝 알고리듬이 다양한 분야에 적용되어 좋은 성능을 내고 있지만, 소나시스템에는 아직 활발히 적용되지 않고 있다. 본 논문에서는 기뢰와 같은 금속 물체와 바위로부터 반사된 능동소나 수신음 데이터를 딥 러닝 알고리듬의 하나인 컨볼루션 신경망으로 식별하는 실험을 수행하였다. 과적합 방지 및 성능 향상을 위해 데이터 확장을 하였고, 확장 및 하이퍼파라미터 값 변화에 따른 성능 변화를 분석하였다. 훈련데이터를 수신각도에 독립적인 경우와 의존적인 경우로 나누어 실험을 수행하였고, 그 결과 각각 88.9%, 94.9%의 성능을 보였다. 이는 이전 연구에서 인공신경망 및 Support Vector Machine 알고리듬을 적용하여 얻은 성능보다 최대 4.5% 포인트 향상되었다.
The IDRS provides detection, classification and bearing/range estimation by performing wavefront curvature analysis on an intercepted active transmission from target. Especially, a estimate of the target bearing/range that significantly affects the optimal operation of own submarine is required. Target bearing/range can be estimated by wavefront curvature ranging which use the difference of time arrival at sensors. But estimation ambiguity occur in bearing/range estimation due to a number of peaks caused by high center frequency and limited bandwidth of the intercepted active transmission and distortion caused by noise. As a result the bearing/range estimation performance is degraded. To estimate target bearing/range correctly, bearing/range estimation method that eliminate estimation ambiguity is required. In this paper, therefore, for wavefront curvature ranging, NLS cost function with curve fitting method is proposed, which provide robust bearing/range estimation performance by eliminating estimation ambiguity. Through simulation the performance of the proposed bearing/range estimation methods are verified.
한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
/
pp.1254-1257
/
1993
Presented in this paper is a newly developed motion planning method of an autonomous mobile robot(MAR) which can be applied to flexible manufacturing systems(FMS). The mobile robot is designed for transporting tools and workpieces between a set-up station and machines according to production schedules of the whole FMS. The proposed method is implemented based on an earlier developed real-time obstacle avoidance method which employs Kohonen network for pattern classification of sonar readings and fuzzy logic for local path planning. Particulary, a novel obstacle avoidance method for moving objects using a collision index, collision possibility measure, is described. Our method has been tested on the SNU mobile robot. The experimental results show that the robot successfully navigates to its target while avoiding moving objects.
수동 소나 시스템에서 표적을 탐지, 식별하는데 가장 중요한 인자는 표적소음에서 나타나는 신호 주파수선 성분이다. 수중의 주변잡음과 표적소음이 복합된 환경에서 표적의 신호 주파수선 성분을 정확히 추출하는데는 신호 탐지 문턱값 설정이나 주변잡음의 변화 때문에 어려움이 따른다. 이 연구에서는 자동 연상 기억장치 신경망을 이용하여 신호 탐지 문턱값 설정이나 주변잡음의 변화에 강인한 음향 표적의 신호 주파수선 탐지 방식을 제안한다. 모의 실험 및 실제 표적 신호에 적용하여 제안한 방식이 우수한 신호 주파수선 탐지성능을 나타냄을 보인다.
LFM 신호를 이용한 능동소나 신호처리에서는 Split-beam을 이용한 좌우 두 빔 사이의 상호상관관계를 측정함으로써 표적의 자세각과 길이 정보를 추정할 수 있다. 그러나 탐지된 원거리 표적의 정보를 추정하기 위해서는 고분해능의 방위각 및 거리 해상도가 요구된다. 이를 위해 나이키스트(Nyquist) 샘플링 주파수보다 높은 샘플링 주파수가 필요하므로, 일반적으로 보간기법을 이용하여 과도샘플링(over-sampling) 을 해야 한다. 하지만 과도 샘플링된 좌우 빔신호를 이용하여 상호상관관계를 구할 경우, 요구되는 연산량과 메모리 용량이 일반적으로 상용 DSP 프로세서들의 처리용량과 내부 메모리 용량을 초과하게 되어 DSP를 이용한 실시간 구현이 어렵게 된다. 본 논문에서는 이러한 문제를 해결하기 위해 누적처리기법을 이용한 Split-beam처리 방법을 제안하였다. 제안한 기법의 성능을 모의실험을 통하여 검증하고, ADSP-TS101을 사용하여 실시간 시스템으로 구현하였다.
The acoustical response of fish depends on size and physical structure na, most important, on the presence or absence of a swimbladder. Acoustic scattering models for swimbladdered fish represent a fish by an ideal pressure-release surface having the size and shape as the swimbladder. Target strength experiments of red seabream (Chrysophrys major) have been conducted using 38 (split-beam), 120 (split-beam) and 200kHz (dual-beam) frequencies. At each start of each experiment, the live fish are placed in the cage at the surface, then the cage is lowed to about $4{\cal}m$ depth where it remains during the measurements. To test the acoustic models, predictions of target strength based on swimbladder morphometries of 10 red seabream offish total length from $103{\cal}mm{\;}to{\;}349{\cal}mm$ ($3 <$TL/\lambda$ < 45)are compared with conventional target strength measurements on the same, shock-frozen immediately after caged experiments. X-ray was projected along dorsal aspect to know the morphological construction of swimbladder. and fish body. At high frequencies, Helmholtz-kirchhoff(HK) approximation would greatly enhance swimbladdered fish modeling. Sound scattering model [HK-ray approximation model] for comparison to experimental target strength data was used to model backscatter measurements from individual fish. The scattering data can be used in the inverse method along with multiple frequency sonar systems to investigate the adequacy of classification and identification of fish
수중음향 시스템에서는 이동 표적에 대한 상태 추정 및 표적 식별 등의 목적을 위해서 표적 방위 추적은 필수적이다. 그러나 감시영역에 근접 또는 교차 표적 등이 존재하는 다수 표적 상황에서의 방위 추적은 매우 어려운 문제로 다양한 접근방법으로 연구되어 왔다. SWORD는 배열 센서 신호의 출력 공분산 행렬로부터 방위 변위를 추정하여 표적을 추적함으로써 별도의 정보 연관 과정이 필요 없는 단순한 구조의 다중 표적 방위 추적 알고리즘을 제안하였으며, RYU 등은 표적 조향 벡터 (target steering vector)와 배열 센서 공분산 행렬의 신호 고유 벡터 (signal eigenvector)가 선형결합 관계임을 이용하여 교차 표적 (cross target)에 대해서도 우수한 성능을 나타내는 효율적인 알고리즘을 제안하였다. 또한 HWANG 등은 잡음 고유 벡터 (noise eigenvector)와 표적 조향 벡터가 직교 관계임을 이용하여 RYU의 알고리즘과 동일한 성능을 유지하면서 연산량을 개선한 알고리즘을 제안하였다. 그러나 기존의 방법은 코히어런트 (coherent) 다중 표적인 경우에는 추적 성능이 저하되는 단점이 있다. 본 논문에서는 배열 센서의 공분산 행렬로부터 추정할 수 있는 신호 고유 벡터와 잡음 공분산 행렬 (noise covariance matrix)의 특성을 이용하여 코히어런트 다중 표적에 대해 추적 성능을 유지할 수 있는 다중 표적 방위 추적 알고리즘을 제안하였으며, 근접 및 교차 기동하는 표적에 대한 시뮬레이션을 통하여 비코히어런트 (incoherent)와 코히어런트 다중 표적에 대해 추적 성능이 우수함을 확인하였다.
수동 소나 시스템에서는 수중 소음원에 대한 신호처리 과정을 수행하여 토널 및 주파수선의 신호 성분으로부터 신호 세기 대역폭, 토널 개수, 토널간의 상호 관계둥의 다양한 특징인자를 분석, 비교하여 표적을 식별하게 되며, 표적 식별율을 향상시키기 위해서는 무엇보다도 주파수선의 신호 성분만을 정밀하게 탐지하고 추출하여야 한다. 그러나 수중신호의 스펙트로그램상에 형성되는 협대역 주파수선은 토널의 신호 세기와 바다 자체의 전달 특성 둥으로 인하여 미약하게 탐지되거나 불규칙하게 끊어져서 불연속적으로 나타날 뿐 아니라 임펄스성의 주변잡음 성분과 복합적으로 존재하므로 주파수선의 신호 성분만을 정밀하게 탐지하고 추출하기가 매우 어렵다. 본 논문에서는 신호 세기가 미약한 경우나 높은 주변잡음이 복합되어 있는 경우에도 정밀하게 주파수선의 신호 성분만을 탐지, 추출한 수 있는 협대역 다중 주파수선의 자동 탐지 및 추출을 위한 기법을 제안하였으며, 실제 수중표적 신호를 적용하여 제안된 알고리즘이 매우 유용함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.