• Title/Summary/Keyword: Sonar dome window

Search Result 7, Processing Time 0.018 seconds

Numerical analysis of acoustic field inside sonar dome by using a beam tracing method and the theory of elastic wave propagation (빔 추적기법과 다층구조에서의 탄성파 전파이론을 적용한 소나돔 내부 음장 수치해석)

  • Han, Seung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.26-33
    • /
    • 2006
  • A sonar dome is basically designed and installed to protect sonar array from shocks, sea wave slaps and floating matters. The acoustic wave passing through sonar dome, however, can be distorted in magnitude and phase. This paper presents a numerical method for predicting the steady-state sound pressure on the surface of transducer array in the sonar dome and typical results of sonar beam pattern affected by sonar dome. A beam tracing model with phase information and a multi-layered elastic boundary model are involved. A full three-dimensional sonar dome is modeled as a GRP acoustic window, a rubber coated steel baffle and a rubber coated steel hull. A transducer array is modeled as thick steel cylinder. There are some assumptions such as incidence of plane wave, specular reflection on boundary and directionality of transducer element.

Variation of the structural stability for the sonar dome window in a naval vessel according to the state of the drain valve (소나돔 충, 배수 밸브의 상태에 따른 함정용 소나돔 윈도우의 구조안정도 변화)

  • Han, HyungSuk;Lee, KyungHyun;Park, SeongHo;Lim, YongSoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.844-853
    • /
    • 2014
  • Since the active sonar for a naval vessel is usually installed in a bulbous bow, GRP(Glass reinforced plastic) material with low density and high strength is used for the material of the sonar dome window in order to prohibit impact by slamming wave or foreign material in the sea. The structural safety of the sonar dome is varied according to the interior and exterior distributed pressure on the sonar dome. Therefore, the variation of the structural safety according to the pressure variation of the sonar dome window caused by the drain valve state is studied by CAE.

A Study on the Measurement and Analysis Method for the Acoustic Transmission Loss of the Material for the Acoustic Window of Sonar Dome (소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰)

  • Jung, Woo-Jin;Han, Seung-Jin;Kim, Won-Ho;Shin, Ku-Kyun;Jeon, Jae-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.729-738
    • /
    • 2006
  • Knowledge of acoustic transmission loss of acoustic window material has a great importance for the sonar performance in ship. The purpose of this study was to investigate the measurement and analysis method for the acoustic transmission loss of the acoustic window materials for sonar dome. The measurement and analysis were carried out in water with GRP material. Transmission losses were calculated based on integrated direct and transmitted signals. The experimental setup enabled to vary the angle of incidence. Thus the transmission loss data could be expressed as the function of frequency and angle of rotation. In this paper, diffraction effect of incident angle, size of specimen with test material, transmission analysis method and multiple waves as incident acoustic signal were discussed.

A Study on the Measurement and Analysis Method for the Acoustic Transmission Loss of the Material for the Acoustic Window of Sonar Dome (소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰)

  • Jung, Woo-Jin;Han, Seung-Jin;Kim, Won-Ho;Shin, Ku-Kyun;Jeon, Jae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1183-1189
    • /
    • 2006
  • Knowledge of acoustic transmission loss of acoustic window material has a great Importance for the sonar performance in ship. The purpose of This study was to investigate the measurement and analysis method for me acoustic transmission loss of the acoustic window materials for sonar dome. The measurement and analysis were carried out in water with GRP material. Transmission losses were calculated based on integrated direct and transmitted signals. The experimental setup enabled to vary the angle of incidence. Thus the transmission loss data could be expressed as the function of frequency and angle of rotation. In this paper, diffraction effect of incident angle, size of specimen with test material, transmission analysis method and multiple waves as incident acoustic signal wet-e discussed

  • PDF

2-Dimensional FEM Based Transient Analysis for an Efficient Design of Acoustic Windows (효율적인 음향 윈도우 설계를 위한 2차원 유한요소법 기반의 과도 해석)

  • Kim, Y.C.;Kim, S.K.;Yoon, S.W.;Lee, Y.;Cho, M.S.;Shin, Ku-Kyun;Koo, J.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.673-678
    • /
    • 2009
  • The efficiency of active sonar that is used underwater observation equipment is important for obtain the information of topography and trace for the objects. Sound wave transmitted from sonar are distorted by acoustic window which is to protect sonar. Making various sonar dome is impossible for experiment, because consumed unnecessary time and expense. So, the purpose of this study is to simulate and analyze the acoustic window propagated sound wave from sonar for designing model reduced insertion loss. Simulation is performed by transient analysis and fluid-structure interaction analysis. As a result, this study will give a opportunity for efficient design of sonar dome without high cost and time consumption.

Acoustic Performance Study of FRP Acoustic Window (FRP 음향창의 음향성능 설계기법 연구)

  • Seo, Young-Soo;Kang, Myeng-Whan;Shin, Ku-Kyun;Jeon, Jae-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.890-896
    • /
    • 2011
  • For developing acoustic window, transmission loss in accordance with incident angle was calculated and compared with measurement results. In design stage, the material choice of acoustic window is very important because the material is one of main parameters of transmission loss and structural strength. In order to analyze the effect of material properties on transmission loss, the parametric studies were carried out and the results were discussed in this paper. And, to verify the design specification of acoustic window, measurement was carried out and the results were compared and analyzed.

Acoustic performance study of FRP acoustic window (FRP 음향창의 음향성능 설계기법 연구)

  • Kang, Myeng-Whan;Seo, Young-Soo;Shin, Ku-Kyun;Jeon, Jae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.285-290
    • /
    • 2011
  • For developing acoustic window, transmission loss in accordance with incident angle was calculated and compared with measurement results. In design stage, the material choice of acoustic window is very important because the material is parameter of transmission loss and structural strength. In order to analyze the effect of material properties on transmission loss, the parametric studies were carried out and the results were discussed in this paper.

  • PDF