• Title/Summary/Keyword: Sonar Sensor

Search Result 183, Processing Time 0.023 seconds

Hovering System for Autonomous Flight of Multi-copter (멀티콥터의 자율비행을 위한 호버링 시스템)

  • Kim, Hyung-Su;Park, Byeong-Ho;Han, Young-Hwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.49-56
    • /
    • 2018
  • As the era of the 4th industrial revolution comes, there is a growing interest in the use of UAVs. While various technologies are being developed using drones, controlling flight of drones is the most basic. Hovering control is essential in order to enable autonomous flight, especially during flight control of drones. In this paper, we design drones based on ATmega2560, Sonar, Optical Flow, and acceleration / gyro 6 axis sensor for drones hovering control, and developed horizontal control, altitude control, position tracking and fixed algorithm based on PID control. In this research, in order to measure the objective result of the drone, keeping the altitude immediately after the drone takes off according to the time, measure the movement value until the position is fixed and stable hovering is maintained and compared analyzed. Experimental results show that the drones can stably hover within 4cm horizontal and 2cm vertical from 50cm above the reference coordinates.

Coherent Multiple Target Angle-Tracking Algorithm (코히어런트 다중 표적 방위 추적 알고리즘)

  • Kim Jin-Seok;Kim Hyun-Sik;Park Myung-Ho;Nam Ki-Gon;Hwang Soo-Bok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.230-237
    • /
    • 2005
  • The angle-tracking of maneuvering targets is required to the state estimation and classification of targets in underwater acoustic systems. The Problem of angle-tracking multiple closed and crossing targets has been studied by various authors. Sword et al. Proposed a multiple target an91e-tracking algorithm using angular innovations of the targets during a sampling Period are estimated in the least square sense using the most recent estimate of the sensor output covariance matrix. This algorithm has attractive features of simple structure and avoidance of data association problem. Ryu et al. recently Proposed an effective multiple target angle-tracking algorithm which can obtain the angular innovations of the targets from a signal subspace instead of the sensor output covariance matrix. Hwang et al. improved the computational performance of a multiple target angle-tracking algorithm based on the fact that the steering vector and the noise subspace are orthogonal. These algorithms. however. are ineffective when a subset of the incident sources are coherent. In this Paper, we proposed a new multiple target angle-tracking algorithm for coherent and incoherent sources. The proposed algorithm uses the relationship between source steering vectors and the signal eigenvectors which are multiplied noise covariance matrix. The computer simulation results demonstrate the improved Performance of the Proposed algorithm.

USN's Efforts to Rebuild its Combat Power in an Era of Great Power Competition (강대국 간의 경쟁시대와 미 해군의 증강 노력)

  • Jung, Ho-Sub
    • Strategy21
    • /
    • s.44
    • /
    • pp.5-27
    • /
    • 2018
  • The purpose of this paper is to look at USN's efforts to rebuild its combat power in the face of a reemergence of great powers competition, and to propose some recommendations for the ROKN. In addition to the plan to augment its fleet towards a 355-ships capacity, the USN is pursuing to improve exponentially combat lethality(quality) of its existing fleet by means of innovative science and technology. In other words, the USN is putting its utmost efforts to improve readiness of current forces, to modernize maintenance facilities such as naval shipyards, and simultaneously to invest in innovative weapons system R&D for the future. After all, the USN seems to pursue innovations in advanced military Science & Technology as the best way to ensure continued supremacy in the coming strategic competition between great powers. However, it is to be seen whether the USN can smoothly continue these efforts to rebuild combat strength vis-a-vis its new competition peers, namely China and Russian navy, due to the stringent fiscal constraints, originating, among others, from the 2011 Budget Control Act effective yet. Then, it seems to be China's unilateral and assertive behaviors to expand its maritime jurisdiction in the South China Sea that drives the USN's rebuild-up efforts of the future. Now, some changes began to be perceived in the basic framework of the hitherto regional maritime security, in the name of declining sea control of the USN as well as withering maritime order based on international law and norms. However, the ROK-US alliance system is the most excellent security mechanism upon which the ROK, as a trading power, depends for its survival and prosperity. In addition, as denuclearization of North Korea seems to take significant time and efforts to accomplish in the years to come, nuclear umbrella and extended deterrence by the US is still noting but indispensible for the security of the ROK. In this connection, the naval cooperation between ROKN and USN should be seen and strengthened as the most important deterrents to North Korean nuclear and missile threats, as well as to potential maritime provocation by neighboring countries. Based on these observations, this paper argues that the ROK Navy should try to expand its own deterrent capability by pursuing selective technological innovation in order to prevent this country's destiny from being dictated by other powers. In doing so, however, it may be too risky for the ROK to pursue the emerging, disruptive innovative technologies such as rail gun, hypersonic weapon... etc., due to enormous budget, time, and very thin chance of success. This paper recommends, therefore, to carefully select and extensively invest on the most cost-effective technological innovations, suitable in the operational environments of the ROK. In particular, this paper stresses the following six areas as most potential naval innovations for the ROK Navy: long range precision strike; air and missile defense at sea; ASW with various unmanned maritime system (UMS) such as USV, UUV based on advanced hydraulic acoustic sensor (Sonar) technology; network; digitalization for the use of AI and big data; and nuclear-powered attack submarines as a strategic deterrent.