• Title/Summary/Keyword: Somatosensory cortex

Search Result 51, Processing Time 0.035 seconds

Effect of Ginseng Saponins on the Distribution of Brain Nerve Cells in Carbon Monoxide-intoxicated Mice and Aged Mice (인삼 사포닌이 일산화탄소중독 및 노화과정에서 생쥐의 뇌신경세포 분포에 미치는 영향)

  • Shin, Jeung-Hee;Lee, Ihn-Rhan;Cho, Geum-Hee;Yun, Jae-Soon
    • YAKHAK HOEJI
    • /
    • v.36 no.3
    • /
    • pp.269-277
    • /
    • 1992
  • The effects of ginseng saponins on the distribution of nerve cells in cerebral cortex of carbon monoxide (CO)-intoxicated mice were studied in the young ($5{\sim}8$ weeks) and aged ($43{\sim}52$ weeks) mice. Mice were exposed to 5000 ppm of CO for 40 minutes (72% HbCO). After that, nerve cells in motor(area 4), somatosensory(area 3) and visual(area 17) area of cerebral cortex was observed. In young mice, the number of nerve cells in each area was significantly decreased on 1st, 7th and 14th day after CO intoxication. In aged mice, that was also decreased after CO intoxication. Especially the number of the nerve cells in motor and somatosensory area was significantly decreased on 1st and 7th day, while that in visual area was decreased only on 1st day. The number of nerve cells in young mice pretreated with ginseng saponins were significantly decreased less on 7th and 14th day than that of untreated mice. The number of nerve cells in each area of normal aged mice was larger than that of normal young mice. The results suggest that CO exposure causes local degeneration or disturbance of nerve cells and delayed neurologic sequelae, while ginseng saponins might play a role of protective action on the nerve cells which were damaged by CO.

  • PDF

Effect of Low Frequency Electroacupuncture on Nicotidamide Adenine Dinucleotide Phosphate-diaphorase(NADPH-d) Positive Neurons in the Brain Cortex of Rat with Adjuvant Induced Rheumatoid Arthritis (저빈도 전침자극이 류마토이드 관절염 유발 흰쥐 대뇌피질 Nicotidamide Adenine Dinucleotide Phosphate-diaphorase(NADPH-d) 양성세포 발현에 미치는 영향)

  • Jung, Ki-Hoon;Roh, Jeong-Du;Kim, E-Hwa;Lee, Eun-Yong
    • Journal of Acupuncture Research
    • /
    • v.25 no.3
    • /
    • pp.179-187
    • /
    • 2008
  • Objectives & Methods : This study was to investigate effect of low frequency electroacupuncture on NADPH-d positive neurons in the brain cortex of rat with adjuvant induced rheumatoid arthritis. Experimental groups were divided into 6 groups ; Normal, Control, $ST_{36}$, $SP_9$, $ST_{36}+SP_9$ and Non-Acupoint. Normal group, non-arthritic group, was injected normal saline, and the other groups were injected FCA. Each acupoint groups were treated by 2Hz electroacupuncture at each acupoints and NA group was treated by 2Hz electroacupuncture at non-acupoint. Each groups were evaluated by the number of NADPH-d positive neurons in primary somatosensory area(S1), secondary somatosensory area(S2), motor area and caudate putamen by using an image analyzer and a microscope. Results : 1. In S1, the number of NADPH-d positive neuron cells in the $ST_{36}$ group were significantly(p<0.05) increased compared with the control group. 2. In S2, the number of NADPH-d positive neuron cells in all electroacupuncture groups were not significantly changed compared with the control group. 3. In motor area, the number of NADPH-d positive neuron cells in $ST_{36}$ group, $SP_9$ group, NA group were significantly(p<0.05) increased compared with the control group. 4. In Caudate putamen, the number NADPH-d positive neuron cells in all electroacupuncture groups were significantly(p<0.05) decreased compared with the control group. Conclusions : Our result demonstrated that low frequency electroacupuncture on $ST_{36}$ & $SP_9$ normalized expression of NADPH-d positive neurons in the brain cortex of the rheumatoid arthritis model in rats.

  • PDF

Immediate Effect on Mu-rhythm of Somatosensory Cortex using Visual Feedback Training in Healthy Adults (건강한 성인에서 시각적 되먹임 훈련이 감각운동겉질의 뮤-리듬에 미치는 즉각적인 효과 )

  • Su-Bok Kim;On-Seok Lee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.3
    • /
    • pp.47-53
    • /
    • 2023
  • PURPOSE: A visual feedback method was proposed to induce brain stimulation in a stroke patient, and among them, there was a treatment using a mirror. On the other hand, mirror therapy focuses only on the functional changes in body movements, and analysis of neurophysiological mechanisms of brain activity is lacking. In addition, studies on evaluating the activity and response generated in specific brain regions during visual feedback training using mirrors are insufficient. METHODS: Fifteen healthy adults (male: 10, female: 5, Years: 23.33 ± 1.23), who were right-handed were recruited. By attaching the C3, Cz, and C4 channels in the sensorimotor cortex using an electroencephalogram, training was performed under the conditions without mirror-based visual feedback (No-condition) and with visual feedback (Tasks-condition). At this time, the immediate activity of the mu-rhythm in response to training was separated and evaluated. RESULTS: The tasks-condition of C3, Cz, and C4 channels activated the relative mu-rhythm rather than the no-condition, and all showed significant differences (p < .05). In addition, in all channels at the start time, the tasks-condition was more active than the no-condition (p < .05). The activity of the cortical response was higher in the tasks-condition than in the no-condition (p < .05). CONCLUSION: The mu-rhythm activity can be evaluated objectively when visual feedback using a mirror is applied to healthy subjects, and a basic analysis protocol is proposed.

Identification of M-1, S-1 Cortex Using Combined Intraoperative SEP and Cortical Stimulation - A Case Report - (수술중 체성감각 유발전위 및 대뇌피질 자극을 이용한 일차 운동피질영역과 일차 감각피질영역의 확인 - 증례보고 -)

  • Lee, Jae-Uhn;Son, Byung-Chul;Kim, Moon-Chan;Kang, Joon-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.7
    • /
    • pp.954-958
    • /
    • 2000
  • In the removal of small subcortical lesion in the eloquent area like sensory-motor cortex, the prevention of neurologic deficit is important. We present our technique of identification of M-1, S-1 cortex in a case of subcortical granuloma located in sensorymotor cortex. To accurately localize mass, stereotactic craniotomy was planned. At the beginning of procedure, functional MRI of motor cortex was done with stereotactic headframe in place. Next, the stereotactic craniotomy about 4 cm was done under propofol anesthesia for cortical mapping. After reflection of dura, central sulcus was identified with phase-reversal response of intraoperative SEP(somatosensory evoked potential) of contralateral median nerve. Then the patient was awakened, and direct cortical stimulation was done. We observed the muscle contractions of elbow, hand and fingers and the paresthesia over forearm, hand, fingers on the M-1 and S-1 cortex. Through cortical mapping and stereotactic guidance, we concluded that the mass lie immediately posterior to central sulcus, then the mass was carefully removed through small transsulcal approach, opening about 1 cm of rolandic sulcus.

  • PDF

Alterations in Cerebrovascular Reactivity by Trigeminovascular System Injury in Rats

  • Park Sang June;Choi Chang Hwa;Lee Won Suk
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.211-219
    • /
    • 2005
  • Trigeminovascular system plays an important role for the cerebral memodynamics. The aim of this study was to investigate the alterations in cerebrovascular reactivity by trigeminovascular system injury in rats. Trigeminovascular system of male Sprague-Dawley rats was injured by either denervation of nasocilliary nerve or neonatal capsaicin treatment. Trigeminovascular system was stimulated by controlled hemorrhagic hypotension or somatosensory (whisker) stimulation. Changes in regional cerebral blood flow (rCBF) and pial arterial diameter were continuously measured by laser-Doppler flowmetry and videomicroscopy, respectively. Nitric oxide synthase (NOS) activity in cerebral cortex was determined by measuring the conversion of $L-^3H-arginine\;to\;L-^3H-citrulline$. Cyclic GMP levels in cerebral cortex and pial artery were determined using the cyclic GMP $^{125}I$ scintillation proximity assay system. rCBF autoregulation was impaired or almost abolished by trigeminovascular system injury. rCBF response to whisker stimulation was significantly attenuated by trigeminovascular system injury. NOS activity as well as cyclic GMP level in cerebral cortex and pial artery were significantly reduced in the group of trigeminovascular system injury. These results suggest that trigeminovascular system injury causes prominent alterations in cerebrovascular reactivity, and that NO, which is generated by neuronal NOS in the trigeminovascular system, is implicated in the regulation of rCBF.

  • PDF

Motor Evoked Potential and Somatosensory Evoked Potential Studies in Acquired Demyelinating Polyneuropathy (후천성 탈수초성 다발신경병증에서의 운동유발전위 및 체성감각유발전위 연구)

  • Kwon, Hyung-Min;Hong, Yoon-Ho;Oh, Dong-Hoon;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.6 no.1
    • /
    • pp.20-25
    • /
    • 2004
  • Background and Objectives: The proximal and distal nerve segments are preferentially involved in acquired demyelinating polyneuropathies (ADP). This study was undertaken in order to assess the usefulness of motor evoked potential (MEP) and somatosensory evoked potential (SSEP) in the detection of the proximal nerve lesion in ADP. Methods: MEP, SSEP and conventional NCS were performed in 6 consecutive patients with ADP (3 AIDP, 3 CIDP). MEP was recorded from abductor pollicis brevis and abductor hallucis using magnetic stimulation of the cortex and the cervical/lumbar spinal roots. SSEP were elicited by stimulating the median and posterior tibial nerves. Latency from cortex and cervical/lumbar roots, central motor conduction time (CMCT), EN1-CN2 interpeak latency were measured for comparison. Results: MEP was recorded in 24 limbs (12 upper and 12 lower limbs) and SSEP in 24 limbs (12 median nerve, 12 posterior tibial nerve). F-wave latency was prolonged in 25 motor nerves (25/34, 73.5%). Prolonged CML and PML were found in 41.7% (10/24) and 45.8% (11/24), respectively. Interside difference (ISD) of CMCT was abnormally increased in the upper extremity, 66.7% (4/6 pairs) in case of CML-PML. EN1-CN2 interpeak latency was abnormally prolonged in one median nerve (1/10) and LN1-P1 interpeak latency was normal in all posterior tibial nerves. Conclusions: MEP and SSEP may provide useful information for the proximal nerve and root lesion in ADP. MEP and SSEP is supplemental examination as well as complementary to conventional NCS.

  • PDF

The Effect of Repetitive Transcranial Magnetic Stimulation-Induced Proprioceptive Deafferentation to Ipsilateral and Contralateral Motor Evoked Potentials (반복적 경두개자기자극을 통한 고유감각 구심로 차단이 동측 및 반대측 운동유발전위에 미치는 영향)

  • Kim, Min-Jeong;Lee, Kyoung-Min;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.2
    • /
    • pp.158-162
    • /
    • 2006
  • Background: It has been proposed that proprioceptive input can modulate neural excitability in both primary motor cortices (M1) simultaneously, although direct evidence for this is still lacking. Previous studies showed that proprioceptive accuracy of one hand is reduced after the application of one-Hz repetitive transcranial magnetic stimulation (rTMS) for 15 minutes over the contralateral somatosensory cortex. The aim of this study was to investigate the effect of rTMS-induced central proprioceptive deafferentation to excitability of both M1 as reflected in ipsilateral and contralateral motor evoked potentials (MEP). Methods: MEPs of both abductor pollicis bravis (APB) muscles were recorded using single-pulse TMS over right M1 in seven healthy subjects. Immediately after one-Hz rTMS was applied for 15 minutes over the right somatosensory cortex, the MEP measurement was repeated. The proprioceptive function of the left thumb was assessed, before and after rTMS, using a position-matching task. Results: There was an increase in ipsilateral MEP after the rTMS: whereas no MEPs were recorded on the ipsilateral hand before the rTMS, MEPs were recorded in both ipsilateral and contralateral hand in three of seven subjects. At the same time, the mean log amplitude was reduced and the mean latency was prolonged in the contralateral MEP. Conclusions: rTMS-induced central proprioceptive deafferentation reduces the MEP generation in the contralateral hand, and fascilitates that in the ipsilateral hand. A further study with a larger sample seems warranted to confirm this finding and to elucidate the neurophysiology underlying it.

  • PDF

Do N37 and P37 Potentials Have Different Generators in Somatosensory Evoked Potential? - Analysis Using Gating Mechanism - (체성감각 유발전위에서 N37과 P37은 다른 발생기를 가지고 있는가? - gating 현상을 이용한 분석 -)

  • Park, Young Seok;Cha, Jae Kwan;Kim, Sang Ho;Kim, Jae Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • Backgroud : The generators of N37 and P37 of posterior tibial nerve somatosensory evoked potential(PTSEP) have not been exactly known. Recently, some reports suggested that P37 and N37 might have different generator. We conducted a study to know the generators of P37 and N37 of PTSEP using gating mechanism. Methods : We evaluated subcortical and cortical somatosensoy evoked potentials(SEPs) in response to posterior tibial nerve stimulation in 3 experimental conditions of foot movement and compared them with PTSEPs in full relaxation of foot. The experimental conditions were: (a) active flexion-extention of stimulated foot, (b) isometric contraction of the stimulated foot, (c) passive flexion-extention of the stimulate foot. We analyzed the latencies and amplitudes of following potentials; P30, N37, P37, and N50. Results : The amplitude of P30 potential did not change during at any paradigms. The amplitudes of P37 and N50 were significantly attenuated in all condition. However, the amplitude of N37 showed no significant change during at any paradigms. Conclusions : These results suggest that the generators of P37 and N37 of PTSEP be different in cortex.

  • PDF

Brain Activation During the Wrist Movement Using Symmetrical Upper Limb Motion Trainer (대칭형 상지 운동기구를 이용한 손목 운동 시 뇌 활성도 패턴)

  • 태기식;김사엽;송성재;이소영;박기영;손철호;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1303-1306
    • /
    • 2004
  • We developed a symmetrical upper limb motion trainer for chronic hemiparetic subjects. This trainer enabled the practice of a forearm pronatio $n^ination and wrist flexion/extension. In this study, we have used functional magnetic resonance imaging(fMRI) with the developed symmetrical upper limb motion device, to compare brain activation patterns elicited by flexion/extension wrist movements of control and hemiparetic subject group. In control group, contralateral somatosensory cortex(SMC) and bilateral cerebellum were activated by dominant hand movement(Task 1), while bilateral movements by dominant hand(Task 2) activated the SMC in both cerebral hemispheres and ipsilateral cerebellum. However, in hemiparetic subject group, contralateral supplymentary motor area(SMA) was activated by unaffected hand movement(Task 1), while the activation of bilateral movements by unaffected hand(Task 2) showed only SMA in the undamaged hemisphere. This study, demonstrating the ability to accurately measure activation in both sensory and motor cortex, is currently being extended to patients in clinical applications such as the recovery of motor function after stroke.ke.

  • PDF

Mouse Somatosensory Cortex Stimulation Using Pulse Modulated Transcranial Magnetic Stimulation (구형파 변조된 경두개 자기자극을 이용한 쥐의 감각피질 자극실험)

  • Sun, Sukkyu;Seo, Taeyoon;Huh, Yeowool;Cho, Jeiwon;Kwon, Youngwoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.482-485
    • /
    • 2016
  • In this work, a transcranial magnetic stimulation(TMS) experiment on animals is performed to stimulate the brain cortex of the mouse using modulated signals. The proposed TMS system is composed of the inverter, transformer, capacitor, variable inductor, and stimulation coil to generate 1.5 mT magnetic field in the brain cortex of the mouse. The stimulation signal is modulated to square wave where the carrier frequency is swept from 85 to 91 kHz to investigate the stimulation effect. The experimental result shows that when the carrier frequency of the stimulation signal is lower than 89 kHz, the reaction of the mouse does not change while the stimulation signal which has the carrier frequency higher than 89 kHz results in decreasing the threshold of the stimulus for the pressure.