• Title/Summary/Keyword: Somatosensory Evoked Potential(SSEP)

Search Result 15, Processing Time 0.025 seconds

Principles of Intraoperative Neurophysiological Monitoring with Insertion and Removal of Electrodes (수술 중 신경계감시검사에서 검사에 따른 전극의 삽입 및 제거방법)

  • Lim, Sung Hyuk;Park, Soon Bu;Moon, Dae Young;Kim, Jong Sik;Choi, Young Doo;Park, Sang Ku
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.453-461
    • /
    • 2019
  • Intraoperative neurophysiological monitoring (INM) examination identifies the damage caused to the nervous system during surgery. This method is applied in various surgeries to validate the procedure being performed, and proceed with confidence. The assessment is conducted in an operating room, using subdermal needle electrodes to optimize the examination. There are no textbooks or guides for the correct stimuli and recording areas for the surgical laboratory test. This article provides a detailed description of the correct stimuli and recording parts in motor evoked potential (MEP), somatosensory evoked potential (SSEP), brainstem auditory evoked potentials (BAEP) and visual evoked potentials (VEP). Free-running Electromyography (EMG) is an observation of the EMG that occurs in the muscle, wherein the functional state of most cranial nerves and spinal nerve roots is determined. In order to help understand the test, an image depicting the inserting subdermal needle electrodes into each of the muscles, is attached. Furthermore, considering both the patient and the examiner, a safe method is suggested for removal of electrodes after conclusion of the test.

Usefulness of Intraoperative Monitoring during Microsurgical Decompression of Cervicomedullary Compression Caused by an Anomalous Vertebral Artery

  • Kim, Sung Tae;Paeng, Sung Hwa;Jeong, Dong Mun;Lee, Kun Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.6
    • /
    • pp.513-516
    • /
    • 2014
  • We report a case of cervicomedullary compression by an anomalous vertebral artery treated using microsurgical decompression with intraoperative monitoring. A 68-year-old woman presented with posterior neck pain and gait disturbance. MRI revealed multiple abnormalities, including an anomalous vertebral artery that compressed the spinal cord at the cervicomedullary junction. Suboccipital craniectomy with C1 laminectomy was performed. The spinal cord was found to be compressed by the vertebral arteries, which were retracted dorsolaterally. At that time, the somatosensory evoked potential (SSEP) changed. After release of the vertebral artery, the SSEP signal normalized instantly. The vertebral artery was then lifted gently and anchored to the dura. There was no other procedural complication. The patient's symptoms improved. This case demonstrates that intraoperative monitoring may be useful for preventing procedural complications during spinal cord microsurgical decompression.

Composite Midface Allotransplantation Model with Sensory and Motor Reinnervation (감각과 운동 신경의 재생을 동반한 중안모 동종이식 모델)

  • Yu, Myung-Soo;Kim, Soung-Min;Seo, Mi-Hyun;Myoung, Hoon;Lee, Jong-Ho;Choi, Jin-Young
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.14 no.1_2
    • /
    • pp.45-56
    • /
    • 2011
  • Face transplantation has been reported over the last six years, and it started in 2004 with the announcement of Cleveland Clinic granting the world's first IRB approval to proceed with human face transplantation. Composite tissue allografts (CTAs) in the facial region are considered to be more immunogenic than other solid organ transplants, so these kinds of animal experiments were also considered as challengeable activities to the facial reconstructive surgeons. For the better understanding of CTAs in the oral and maxillofacial fields, we reviewed several recent articles about facial composite transplantation animal model, and summarized some knowledges of composite midface allotransplantation model with sensory and motor reinnervation in this review article.

  • PDF

Evoked Potentials before the Intractable Epilepsy Surgery (난치성 뇌전증 환자에서 수술 전 유발전위검사)

  • Lim, Sung Hyuk;Park, Sang Ku;Baek, Jae Seung;Kim, Kab Kyu;Kim, Ki Eob;Lee, Yu Ji
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.198-204
    • /
    • 2019
  • Various treatments can be attempted in patients with intractable epilepsy, in whom the symptoms of seizures are not controlled by various drugs. On the other hand, in patients requiring a surgical method, a preoperative examination is needed to determine the portion of seizure site to be resected. Electrodes are inserted into the cerebral cortex for accurate lesion measurements and safe operation. The electrodes inserted in the cortex not only record the electroencephalography (EEG), but also allow various tests to confirm the function of the part. One of these methods is the evoked potential test. From January 2015 to December 2018, the trends of measured waveforms in were analyzed 70 patients. The somatosensory evoked potential (SSEP) recorded on the electrode inserted in the cerebral cortex can be searched for the pathway of the central sulcus to avoid the primary motor area and primary sensory area. In addition, using the middle latency auditory evoked potentials (MLAEP) and flash visual evoked potentials (FVEP), the functional cortex in the auditory cortex and the visual cortex were compared with the seizure focus point on the EEG to help determine the location of the ablation and minimize functional impairment after surgery.

Characteristics of Trigeminal Evoked Potential and It's Pathway in the Rat (백서에서 삼차신경 유발전위의 특성과 경로 분석)

  • Kim, Se-Hyuk;Zhao, Chun-Zhi;Kwon, Oh-Kyoo;Lee, Bae-Hwan;Park, Yong-Gou;Chung, Sang-Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.985-994
    • /
    • 2000
  • Objective : There are some advantages of trigeminal evoked potential(TEP) recording compared to other somatosensory evoked potential(SSEP) recordings. The trigeminal sensory pathway has a pure sensory nerve branch, a broader receptive field in cerebral cortex, and a shorter pathway. Despite these advantages, there is little agreement as to what constitutes a normal response and what wave forms truly characterize the intraoperative TEP. This study presents the normative data of TEP recorded on the epidural surface of the rat with a platinum ball electrode. Materials & Methods : Under general anesthesia with urethane, the adult Sprague-Dawley male rats(300-350g) were given electrical stimulation with two stainless steel electrodes which were inserted into the subcutaneous layer of the area around whiskers. A reference electrode was positioned in the temporalis muscle ipsilateral to the recording site. Results : TEPs were recorded in the Par I area of somatosensory cortex and recorded most apparently on the point of 2mm posterior from the bregma and 6mm lateral from the midline. The typical wave form consisted of 5 peaks (N1-P1-N2-P2-N3 according to emerging order, upward negativity). Each latency to corresponding peaks was not influenced by the different intensities of stimulation, especially from 1 to 5mA. Average latencies of 5 peaks were in the following order ; 7.7, 11.1, 15, 22.3, 29.4ms. There was also no significant difference between latencies before and after administration of muscle relaxant(pancuronium). For the electrophysiological localization of recorded waves, the action potential of a single unit was recorded with glass microelectrode(filled with 2M NaCl, $3-5M{\Omega}$) in the thalamus of rat. A sharp wave was recorded in the VPM nucleus, in which the latency was shorter than that of N1. This suggests that all 5 peaks were generated by neural activities in the suprathalamic pathway. Conclusion : In terms of recording near-field potentials, our data also suggests that TEP in the rat may be superior to other SSEPs. In overall, these results may afford normative data for the studies of supratentorial lesions such as hydrocephalus or cerebral ischemia which can have an influence on near-field potentials.

  • PDF