• Title/Summary/Keyword: Somatosensory

Search Result 219, Processing Time 0.028 seconds

Lateral Femoral Cutaneous Nerve Somatosensory Evoked Potential Study in Normal Adults (정상성인의 외측대퇴피부신경 체감각 유발전위 검사)

  • Moon, Seung-Sik;Park, Mee-Young
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.67-74
    • /
    • 2001
  • Background: Meralgia paresthetica(MP) which is characterized by paresthesias and sensory impairment without motor weakness in the anterolateral aspects of the thigh is produced by compression of the lateral femoral cutaneous nerve(LFCN). Even though the diagnosis of MP is mostly based on the clinical symptoms, electrophysiologic study is mandatory to confirm the disease objectively. It has been known that Somatosensory evoked potential(SSEP) study of LFCN is a simple and very useful method to evaluate MP, so we studied SSEP of LFCN in normal adults and offer normal values. Materials and Methods: Thirty six normal adults(23 males and 13 females) ages from 21 to 73 years old($mean{\pm}SD$:$42.06{\pm}15.74$) were studied SSEP of LFCN bilaterally. The stimulation site was anterolateral aspect of thighs and the recording site was Cz'. Results: The mean values($mean{\pm}SD$) of $LP_0$, $SP_0$, $LN_1$ and $SN_1$ of all subjects were 35.10(${\pm}2.42$), 33.80(${\pm}2.4$), 43.68(${\pm}1.88$) and 42.16(${\pm}2.12$) and the mean values($mean{\pm}SD$ of $DP_0$, $DN_1$ and DA(${\mu}V{\pm}SD$ were 1.30(${\pm}1.14$), 1.52(${\pm}1.38$) and 0.32(${\pm}0.33$). Conclusion: For the diagnosis of MP. comparison of latency difference between both sides is more reliable than simple value of latency itself because of individual differences of body types. According to our results. the latency difference should be less than 2 msec and the amplitude difference was less than 1.6 times in normal adults.

  • PDF

Nociplastic pain

  • Jeong Hee Cho
    • Annals of Clinical Neurophysiology
    • /
    • v.25 no.2
    • /
    • pp.78-83
    • /
    • 2023
  • Nociplastic pain refers to pain arising from altered nociception without evidence of tissue or somatosensory damage. It encompasses various clinical conditions with shared neurophysiological mechanisms involving different organ systems. Nociplastic pain can occur independently or alongside chronic pain conditions with a nociceptive or neuropathic origin. This review introduces the concept of nociplastic pain, its clinical manifestations and the underlying pathophysiology. Taking a biopsychosocial approach can lead to a better understanding of nociplastic pain and improved treatment outcomes for affected individuals.

Effect of Low Frequency Electroacupuncture on Nicotidamide Adenine Dinucleotide Phosphate-diaphorase(NADPH-d) Positive Neurons in the Brain Cortex of Rat with Adjuvant Induced Rheumatoid Arthritis (저빈도 전침자극이 류마토이드 관절염 유발 흰쥐 대뇌피질 Nicotidamide Adenine Dinucleotide Phosphate-diaphorase(NADPH-d) 양성세포 발현에 미치는 영향)

  • Jung, Ki-Hoon;Roh, Jeong-Du;Kim, E-Hwa;Lee, Eun-Yong
    • Journal of Acupuncture Research
    • /
    • v.25 no.3
    • /
    • pp.179-187
    • /
    • 2008
  • Objectives & Methods : This study was to investigate effect of low frequency electroacupuncture on NADPH-d positive neurons in the brain cortex of rat with adjuvant induced rheumatoid arthritis. Experimental groups were divided into 6 groups ; Normal, Control, $ST_{36}$, $SP_9$, $ST_{36}+SP_9$ and Non-Acupoint. Normal group, non-arthritic group, was injected normal saline, and the other groups were injected FCA. Each acupoint groups were treated by 2Hz electroacupuncture at each acupoints and NA group was treated by 2Hz electroacupuncture at non-acupoint. Each groups were evaluated by the number of NADPH-d positive neurons in primary somatosensory area(S1), secondary somatosensory area(S2), motor area and caudate putamen by using an image analyzer and a microscope. Results : 1. In S1, the number of NADPH-d positive neuron cells in the $ST_{36}$ group were significantly(p<0.05) increased compared with the control group. 2. In S2, the number of NADPH-d positive neuron cells in all electroacupuncture groups were not significantly changed compared with the control group. 3. In motor area, the number of NADPH-d positive neuron cells in $ST_{36}$ group, $SP_9$ group, NA group were significantly(p<0.05) increased compared with the control group. 4. In Caudate putamen, the number NADPH-d positive neuron cells in all electroacupuncture groups were significantly(p<0.05) decreased compared with the control group. Conclusions : Our result demonstrated that low frequency electroacupuncture on $ST_{36}$ & $SP_9$ normalized expression of NADPH-d positive neurons in the brain cortex of the rheumatoid arthritis model in rats.

  • PDF

Effects of Somatosensory Training on Upper Limb for Postural Control and Locomotion in Hemiplegic Stroke with Unilateral Neglect

  • Song, Bo-Kyoung
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.5
    • /
    • pp.332-338
    • /
    • 2015
  • Purpose: The purpose of this study was to examine the effect of postural control and locomotion on improvement of two point discrimination (TPD), stereognosis (ST) through somatosensory training (SST) on the upper limb (UL). Methods: The subjects were 20 hemiplegia patients who have problems with unilateral neglect after stroke. The patients were divided into two groups, the experimental group (EG) and the control group (CG). In the EG, SST for TPD, ST was performed 18 times, three times a week for six weeks, together with physical therapy (PT) and occupational therapy (OT). In the CG conventional PT and OT without SST was performed for six weeks. Several assessment tools were used in comparison of groups; two point discrimination test (TPDT) on forearm (F), thenar (T), hypothenar (TH), thumb tip (TH-T), index finger tip (IN-T), stereognosis test (ST), postural assessment scale for stroke (PASS), and clinical test of sensory interaction on balance (CTSIB) and timed up and go test (TUG). Results: In the CG, conventional PT and OT resulted in statistically improved TPDT (F), ST, PASS, and TUG. In the EG, SST resulted in statistically improved TPDT (F, T, HT, TH-T, IN-T), ST, PASS, and TUG. TPDT-T, ST, and CTSIB with length of displacement with eye open (LDEO) also showed significant improvement between the groups. Conclusion: In both groups TPDT ST, PASS and TUG, and SST had effects on the UL and TPDT, ST and static postural control had greater effects compared with the PG. Therefore, we could assume that TPD and ST are very important in performing human activities including postural control and locomotion.

The Cortical Activation by Functional Electrical Stimulation, Active and Passive Movement (능동 및 수동 운동과 기능적 전기자극에 의한 대뇌 피질의 활성화)

  • Kwon, Yong-Hyun;Jang, Sung-Ho;Han, Bong-Soo;Choi, Jin-Ho;Lee, Mi-Young;Chang, Jong-Sung
    • Physical Therapy Korea
    • /
    • v.12 no.2
    • /
    • pp.73-80
    • /
    • 2005
  • We investigated the activation of the cerebral cortex during active movement, passive movement, and functional electrical stimulation (FES), which was provided on wrist extensor muscles. A functional magnetic resonance imaging study was performed on 5 healthy volunteers. Tasks were the extension of right wrist by active movement, passive movement, and FES at the rate of .5 Hz. The regions of interest were measured in primary motor cortex (M1), primary somatosensory cortex (SI), secondary somatosensory cortex (SII), and supplementary motor area (SMA). We found that the contralateral SI and SII were significantly activated by all of three tasks. The additional activation was shown in the areas of ipsilateral S1 (n=2), and contralateral (n=1) or ipsilateral (n=2) SII, and bilateral SMA (n=3) by FES. Ipsilateral M1 (n=1), and contralateral (n=1) or ipsilateral SII (n=1), and contralateral SMA (n=1) were activated by active movement. Also, Contralateral SMA (n=3) was activated by passive movement. The number of activated pixels on SM1 by FES ($12{\pm}4$ pixels) was smaller than that by active movement ($18{\pm}4$ pixels) and nearly the same as that by passive movement ($13{\pm}4$ pixels). Findings reveal that active movement, passive movement, and FES had a direct effect on cerebral cortex. It suggests that above modalities may have the potential to facilitate brain plasticity, if applied with the refined-specific therapeutic intervention for brain-injured patients.

  • PDF

Motor Evoked Potential and Somatosensory Evoked Potential Studies in Acquired Demyelinating Polyneuropathy (후천성 탈수초성 다발신경병증에서의 운동유발전위 및 체성감각유발전위 연구)

  • Kwon, Hyung-Min;Hong, Yoon-Ho;Oh, Dong-Hoon;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.6 no.1
    • /
    • pp.20-25
    • /
    • 2004
  • Background and Objectives: The proximal and distal nerve segments are preferentially involved in acquired demyelinating polyneuropathies (ADP). This study was undertaken in order to assess the usefulness of motor evoked potential (MEP) and somatosensory evoked potential (SSEP) in the detection of the proximal nerve lesion in ADP. Methods: MEP, SSEP and conventional NCS were performed in 6 consecutive patients with ADP (3 AIDP, 3 CIDP). MEP was recorded from abductor pollicis brevis and abductor hallucis using magnetic stimulation of the cortex and the cervical/lumbar spinal roots. SSEP were elicited by stimulating the median and posterior tibial nerves. Latency from cortex and cervical/lumbar roots, central motor conduction time (CMCT), EN1-CN2 interpeak latency were measured for comparison. Results: MEP was recorded in 24 limbs (12 upper and 12 lower limbs) and SSEP in 24 limbs (12 median nerve, 12 posterior tibial nerve). F-wave latency was prolonged in 25 motor nerves (25/34, 73.5%). Prolonged CML and PML were found in 41.7% (10/24) and 45.8% (11/24), respectively. Interside difference (ISD) of CMCT was abnormally increased in the upper extremity, 66.7% (4/6 pairs) in case of CML-PML. EN1-CN2 interpeak latency was abnormally prolonged in one median nerve (1/10) and LN1-P1 interpeak latency was normal in all posterior tibial nerves. Conclusions: MEP and SSEP may provide useful information for the proximal nerve and root lesion in ADP. MEP and SSEP is supplemental examination as well as complementary to conventional NCS.

  • PDF

Effect of Vision Coherent Sensory Cue on Roll Tilt Perception and Sensory Weighting (족부 진동 자극 유무에 따른 인체의 운동지각 변화 및 정량화)

  • Lim, Hye-Rim;Park, Su-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1091-1097
    • /
    • 2012
  • Nowadays, some movie theaters provide additional sensory information in 3D movies to enhance visually induced motion perception. However, no studies have investigated how motion perception increases. Thus, in this study, we examined the effect of visual coherent sensory information on visually induced motion perception and quantification of sensory information. A visual stimulus rotated sinusoidally and visual coherent sensory information were applied as vibrations to a subject's foot. We measured the sway of the subject's body by using a force plate and somatosensory bar rotation that represents the subject's perception of the horizon using an encoder. By using this data, we obtained the weight of the sensory information using a Kalman filter. As a result, it was found that subjects rotated the somatosensory bar more when visual coherent vibrations were applied. The weight of vision also increased when visual coherent vibrations were applied. Thus, we can conclude that visual coherent sensory information tends to enhance visually induced motion perception and weight of vision.

Suggestions for the Effective Intraoperative Neurophysiological Monitoring in Microvascular Decompression Surgery of Hemifacial Spasm (편측성 안면경련 환자의 미세혈관 감압수술에서 효과적인 수술 중 신경계 감시검사를 위한 제안)

  • Lim, Sung-Hyuk
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.3
    • /
    • pp.262-268
    • /
    • 2016
  • Hemifacial spasm is a disease caused by involuntary facial muscles with repeated unilateral convulsive spasms. It involves contraction of multiple muscles at the same time (synkinesia). The pathogenesis appears to be the pressure on the vessel by the facial nerve. This study included hemifacial spasm patients, who received microvascular decompression surgery. Brainstem auditory evoked potential and the examination time were carefully noted when using brain surgical retractor. The facial nerve electromyography tests for the identification of artifacts and EMG waveform when the facial nerve damage, about the importance of the maintenance of anesthesia in the lateral spread response and in a somatosensory evoked potential propose a new method. Based on the above test, it will be more effective.

Effect of Unstale Surface Lumbar Stabilization Exercise on Trunk Posture and Balance Ability in Patients With Scoliosis (불안정한 지지면의 척추안정화 운동이 척추측만증 환자의 체간 자세와 균형에 미치는 영향)

  • Lee, Woo-Jin;Lim, Chang-Hun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.1
    • /
    • pp.59-67
    • /
    • 2012
  • Purpose : This study was somatosensory less in patients with idiopathic scoliosis somatosensory input to the lumbar stabilization exercises carried out to determine the most effective treatment method to be stable and unstable in terms of supporting the lumbar stabilization exercises the patient's torso length and postural sway by comparing the distance from a standing position and looked for differences in effect on the balance. Methods : The subjects of the study were 18 patients who showed the symptom of scoliosis. The study classified the patients into two experimental groups, one using an unstable surface and one a fixed surface, and the patients were required to do a lumbar stabilization exercise a total of 12 times for 60 minutes per session, three times a week for four weeks. The study carried out a paired comparison t-test so as to compare differences between measurement values in each experimental group before and after the exercise. Results : Superior iliac spine on the left, there was a significant reduction in the group doing the lumbar stabilization exercise on an unstable surface (p<0.05). Regarding change in sway distance to the left and right directions in the group doing the lumbar stabilization exercise on the unstable surface, there was a significant decrease in both the condition of closed eyes or open eyes (p<0.05). As for change in sway distance in forward-and-backward direction, there was a significant reduction in the condition of either closed eyes or open eyes (p<0.05). Conclusion : The lumbar stabilization exercise on an unstable surface improved the trunk posture of patients with scoliosis symmetrically, and the static balance ability in a standing posture was discovered to be improved. In the future, the lumbar stabilization exercise on an unstable surface may be used as a posture correction and balance increase exercise for patients with scoliosis.

Effects of Vibratory Stimulus on Postural Balance Control during Standing on a Stable and an Unstable Support (안정판과 불안정판에서 자세 균형 조절에 대한 진동자극의 영향)

  • Yu, Mi;Eun, Hey-In;Kim, Dong-Wook;Kwon, Tae-Kyu;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.647-656
    • /
    • 2007
  • The purpose of this study was to analyze the effects of vibratory stimulus as somatosensory inputs on the postural control in human standing. To study these effects, the center of pressure(COP) was observed while subjects were standing on a stable and an unstable support with co-stimulated mechanical vibrations to flexor ankle muscles(tibialis anterior tendon, achilles tendon) and two plantar zones on both foot. The COP sway measurement was repeated twice in four conditions: (1) with visual cue and vibration, (2) without visual cue and vibration, (3) with visual cue and without vibration, (4) without visual cue and with vibration. The calculated parameters were the COP sway area and the distance, the median frequency and the spectral energy of COP sway in three intervals $0.1{\sim}0.3,\;0.3{\sim}1,\;1{\sim}3Hz$. The results showed that vibratory stimulus affect postural stability. The reduction rate of the COP sway with vibratory stimulus were higher on the unstable support because the effect of postural stability increases when afferent nervous flow is more activated by vibration on unstable support. If unclear visual or vibratory information is received, one type of information is compared with the other type of sensory information. Then the input balance between visual and vibratory information is corrected to maintain postural stability. These findings are important for the rehabilitation system of postural balance control and the use of vibratory information.