• Title/Summary/Keyword: Somatic cell nuclear transfer

Search Result 259, Processing Time 0.03 seconds

Comparison of In Vitro Development of Porcine Embryos Derived from Transfer of Embryonic Germ Cell Nuclei into Oocytes by Electrofusion and Piezo-Driven Microinjection

  • Ahn, Kwang-Sung;Won, Ji-Young;Heo, Soon-Young;Kang, Jee-Hyun;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.127-131
    • /
    • 2007
  • Embryonic germ (EG) cells are undifferentiated stern cells isolated from cultured primordial germ cells (PGC). These cells share many characteristics with embryonic stem cells including morphology and pluripotency. Undifferentiated porcine EG cell lines demonstrating capacities of differentiation both in vitro and in vivo have been established. Since EG cells can be cultured indefinitely in an undifferentiated state, whereas somatic cells in primary culture are often unstable and have limited lifespan, EG cells may provide inexhaustible source of karyoplasts in nuclear transfer (NT). In this study the efficiencies of NT using porcine EG and fetal fibroblast cells were compared. Two different techniques were used to perform NT. With conventional NT procedure (Roslin method) involving fusion of donor cells with enucleated oocytes, the rates of development to the blastocyst stage in EG and somatic cell NT were 16.8% (59/351) and 14.5% (98/677), respectively. In piezo-driven microinjection (Honolulu method) of donor nuclei into enucleated oocytes, the rates of blastocyst formation in EG and somatic cell NT were 11.9% (15/126) and 9.4% (9/96), respectively. Regardless of NT methods used in this study, EG cell NT gave rise to comparable rate of blastocyst development to somatic cell NT. Overall, EG cells can be used as karyoplast donor in NT procedure, and embryos can be produced by EG cell NT that may be used as an alternative to conventional somatic cell NT.

An efficient SCNT technology for the establishment of personalized and public human pluripotent stem cell banks

  • Lee, Jeoung Eun;Chung, Young Gie;Eum, Jin Hee;Lee, Yumie;Lee, Dong Ryul
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.197-198
    • /
    • 2016
  • Although three different research groups have reported successful derivations of human somatic cell nuclear transfer-derived embryonic stem cell (SCNT-ESC) lines using fetal, neonatal and adult fibroblasts, the extremely poor development of cloned embryos has hindered its potential applications in regenerative medicine. Recently, however, our group discovered that the severe methylation of lysine 9 in Histone H3 in a human somatic cell genome was a major SCNT reprogramming barrier, and the overexpression of KDM4A, a H3K9me3 demethylase, significantly improved the blastocyst formation of SCNT embryos. In particular, by applying this new approach, we were able to produce multiple SCNT-ES cell lines using oocytes obtained from donors whose eggs previously failed to develop to the blastocyst stage. Moreover, the success rate was closer to 25%, which is comparable to that of IVF embryos, so that our new human SCNT method seems to be a practical approach to establishing a pluripotent stem cell bank for the general public as well as for individual patients.

Optimization of Procedure for Efficient Gene Transfer into Porcine Somatic Cells with Lipofection

  • Kim, D.Y.;McElroy, S.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.648-656
    • /
    • 2008
  • The objective of this study was to establish conditions for transfection of a foreign gene into somatic cells using cationic lipid reagents and to evaluate the effects of transfection on in vitro development of somatic cell nuclear transfer (SCNT) embryos. Green fluorescent protein (GFP) gene was used as a foreign gene and a non-transfected somatic cell was utilized as a control karyoplast. Monolayers of porcine cells were established and subsequently transfected with a GFP-expressing gene (pEGFP-N1) using three types of transfection reagents (LipofectAMINE PLUS, FuGENE 6 or ExGen500). Donor cells used for SCNT included transfected fetal or adult fibroblasts and oviduct epithelial cells, either serum-fed or serum-starved. Oocytes matured in vitro for 42 h were reconstructed with either transfected or non-transfected porcine somatic cells by electric fusion and activation using a single DC pulse of 1.8 kV/cm for $30{\mu}s$ in $Ca^{2+}$ and $Mg^{2+}-containing$ 0.26 M mannitol solution. Reconstructed oocytes were subsequently cultured in NCSU-23 medium for 168 h and the developmental competence and cell number in blastocyst were compared. There were no significant differences (P>0.05) in fusion, cleavage rates or development to the blastocyst stage between non-transfected, transfected, serum-fed and serum-starved cells. However, the rates of GFP-expressing blastocysts were higher in the FuGENE 6 group (71.4%) among transfection reagents and in the fetal fibroblasts group (70.4%) for donor cells. These results indicate that fetal fibroblasts transfected with FuGENE 6 can be used as donor cells for porcine SCNT and that GFP gene can be safely used as a marker of foreign genes in porcine transgenesis.

Chromosome Aberrations in Porcine Embryo Produced by Nuclear Transfer with Somatic Cell

  • Ah, Ko-Seung;Jin, Song-Sang;Tae, Do-Jeong;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.73-73
    • /
    • 2002
  • Nuclear transfer (NT) techniques have advanced in the last years, and cloned animals have been produced by using somatic cells in several species including pig. However, it is difficult that the nuclear transfer porcine embryos development to blastocyst stage overcoming the cell block in vitro. Abnormal segregation of chromosomes in nuclear transferred embryos on genome activation stage bring about embryo degeneration, abnormal blastocyst, delayed and low embryo development. Thus, we are evaluated that the correlations of the frequency of embryo developmental rates and chromosome aberration in NT and In viかo fertilization (IVF) derived embryo. We are used for ear-skin-fibroblast cell in NT. If only karyotyping of embryonic cells are chromosomally abnormal, they may difficultly remain undetected. Then, we evaluate the chromosome aberrations, fluorescent in situ hybridization (FISH) with porcine chromosome 1 submetacentric specific DNA probe were excuted. In normal diploid cell nucleus, two hybridization signal was detected. In contrast, abnormal cell figured one or three over signals. The developmental rates of NT and IVF embryos were 55% vs 63%, 32% vs 33% and 13% vs 17% in 2 cell, 8 cell and blastocyst, respectively. When looking at the types of chromosome aberration, the detection of aneuploidy at Day 3 on the embryo culture. The percentage of chromosome aneuploidy of NT and IVF at 4-cell stage 40.0%, 31.3%, respectively. This result indicate that chromosomal abnormalities are associated with low developmental rate in porcine NT embryo. It is also suggest that abnormal porcine embryos produced by NT associated with lower implantation rate, increase abortion rate and production of abnormal fetuses.

  • PDF

Nuclear Modeling and Developmental Potential of Bovine Somatic Nuclear Transfer Embryos Cloned by Two Different Activation Methods

  • Jeon, Byeong-Gyun;Rho, Gyu-Jin
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.105-113
    • /
    • 2011
  • The present study investigated the nuclear remodeling, development potential with telomerase activity and transcription level of X-linked genes (ANT3, HPRT, MeCP2, RPS4X, XIAP, XIST and ZFX) in the bovine somatic cell nuclear transfer (SCNT) embryos using two different fusion and activation methods. Female adult fibroblasts were injected into perivitelline space of in vitro matured oocytes. The oocyte-nucleus complexes were fused and followed by immediately either activated (Group 1), or activated at 1 h post-fusion (hpf) (Group 2), respectively. The incidence of normal premature chromosome condensation (PCC) at 1 hpf was slightly increased in the Group 2, compared to those of Group 1, but there was no significant (p<0.05) difference. The incidence of normal pronucleus (PN) and chromosome spread at 5 and 18 hpf were significantly (p<0.05) higher in the Group 2 than those of Group 1. The cleavage rate to 2-cell stage, developmental rate to blastocyst stage, and the mean number of total and ICM cell numbers were significantly (p<0.05) higher in the Group 2, compared to those of Group 1. Level of telomerase activity was significantly (p<0.05) higher in the SCNT blastocysts of Group 2, compared to those of Group 1. Transcript levels of HPRT, MeCP2 and XIST were not significantly (p<0.05) different between blastocysts of Group 1 and 2. However, transcript level of ANT3, RPS4X, XIAP and ZFX were significantly (p<0.05) up-regulated in the SCNT blastocysts of Group 2, compared to those of Group 1. Taken together, it is concluded that oocyte activation at 1 hpf induces the enhanced developmental potential by efficient nuclear remodeling and subsequent facilitation of the nuclear reprogramming of bovine SCNT embryos.

Enhanced Green Fluorescent Protein Gene under the Regulation of Human Oct4 Promoter as a Marker to Identify Reprogramming of Human Fibroblasts

  • Heo, Soon-Young;Ahn, Kwang-Sung;Kang, Jee-Hyun;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • Recent studies on nuclear transfer and induced pluripotent stem cells have demonstrated that differentiated somatic cells can be returned to the undifferentiated state by reversing their developmental process. These epigenetically reprogrammed somatic cells may again be differentiated into various cell types, and used for cell replacement therapies through autologous transplantation to treat many degenerative diseases. To date, however, reprogramming of somatic cells into undifferentiated cells has been extremely inefficient. Hence, reliable markers to identify the event of reprogramming would assist effective selection of reprogrammed cells. In this study, a transgene construct encoding enhanced green fluorescent protein (EGFP) under the regulation of human Oct4 promoter was developed as a reporter for the reprogramming of somatic cells. Microinjection of the transgene construct into pronuclei of fertilized mouse eggs resulted in the emission of green fluorescence, suggesting that the undifferentiated cytoplasmic environment provided by fertilized eggs induces the expression of EGFP. Next, the transgene construct was introduced into human embryonic fibroblasts, and the nuclei from these cells were transferred into enucleated porcine oocytes. Along with their in vitro development, nuclear transfer embryos emitted green fluorescence, suggesting the reprogramming of donor nuclei in nuclear transfer embryos. The results of the present study demonstrate that expression of the transgene under the regulation of human Oct4 promoter coincides with epigenetic reprogramming, and may be used as a convenient marker that non-invasively reflects reprogramming of somatic cells.

Reproductive Efficiency and Characteristics of Cloned Miniature Piglets Produced from Domestic Commercial Gilts

  • You, Jin-Young;Jeon, Yu-Byeol;Hyun, Sang-Hwan;Park, Soo-Bong;Lee, Eun-Song
    • Journal of Embryo Transfer
    • /
    • v.25 no.4
    • /
    • pp.215-219
    • /
    • 2010
  • The objective of this study was to examine the reproductive characteristics of cloned miniature piglets produced from surrogate domestic pigs. Somatic cell nuclear transfer (SCNT) miniature pig embryos were transferred into domestic pigs. As controls, domestic pigs of the same breed with surrogates for SCNT embryos and miniature pigs of the same breed with the somatic cell donor were bred by artificial insemination and natural mating, respectively. Surrogate domestic pigs that farrowed cloned miniature piglets had a significantly longer gestation length (118.1 days) than conventionally bred domestic (115.4 days) and miniature (115.5 days) pigs. Furthermore, the birth weight of cloned miniature piglets produced from domestic pigs (743 g) was significantly greater than that of miniature piglets produced by natural breeding (623 g). Also, cloned miniature piglets had a significantly lower weaning rate (49.7%) than conventionally produced domestic (91.5%) and miniature (100%) piglets. No differences were observed between female and male cloned piglets in gestation length, litter size, birth weight, or weaning rate. Our results demonstrate that gestation length is extended in domestic pigs that are transferred with SCNT miniature pig embryos and that cloned miniature piglets have increased birth weight and high pre-weaning mortality.

Study on Chemicals for Post-activation in Porcine Somatic Cell Nuclear Transfer

  • Min, Kyuhong;Na, Seungwon;Lee, Euncheol;Kim, Ghangyong;Yu, Youngkwang;Roy, Pantu Kumar;Fang, Xun;Salih, MB;Cho, Jongki
    • Journal of Embryo Transfer
    • /
    • v.31 no.2
    • /
    • pp.131-136
    • /
    • 2016
  • Since the first success of animal cloning, somatic cell nuclear transfer presented various ideas in many research areas such as regenerative medicine. However, SCNT embryos has poor survival rate. Therefore, numerous researches carried out to enhance the developmental capability of porcine nuclear transfer embryos. Cytochalasin B, demecolcine, latrunculin A, cycloheximide and 6-dimethylaminopurine are efficient chemicals treated in post-activation procedure to increase the efficiency of SCNT. This review study is aim to investigate the effects of these chemicals applied to post-activation in porcine SCNT. Cytochalasin B, demecolcine, latrunculin A are cytoskeletal manuplators inhibit extrusion of pseudo-polar body. Cytochalasin B and demecolcine showed considerably higher blastocyst formation proportion (26-28%) compared to when they are not treated (16%). And when latrunculin A was treated for postactivation, blastocyst formation proportion was increased in SCNT embryos exposed to LA (38%) than those in control (14%). On the other hand, cycloheximide and 6-dimethylaminopurine are protein synthesis and kinase inhibitors. And they help to maintain $Ca^{2+}$ fluctuation in oocytes. Cleavage and blastocyst rates of NT embryos were increased when they were exposed to CHX (16.9% and 5.4% with no CHX).And 6-DMAP also showed higher blastocyst formation (21.5% compared to 15.7%, control). Although all these chemicals have different mechanisms, they showed developmental competence enhancement in NT embryos. However, there are only few studies comparing each chemical's post-activation effect. Therefore, further research and study should be conducted to find optimal chemical for improving the efficiency of SCNT.

Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells

  • Shin, Dong-Hyuk;Lee, Jeoung-Eun;Eum, Jin Hee;Chung, Young Gie;Lee, Hoon Taek;Lee, Dong Ryul
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2017
  • Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.