• Title/Summary/Keyword: Somatic cell

Search Result 770, Processing Time 0.027 seconds

Application of the modified handmade cloning technique to pigs

  • Lee, Eun Ji;Ji, Kuk Bin;Lee, Ji Hye;Oh, Hyun Ju;Kil, Tae Young;Kim, Min Kyu
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.281-294
    • /
    • 2021
  • Although somatic cell nuclear transfer (SCNT) is frequently employed to produce cloned animals in laboratories, this technique is expensive and inefficient. Therefore, the handmade cloning (HMC) technique has been suggested to simplify and advance the cloning process, however, HMC wastes many oocytes and leads to mitochondrial heteroplasmy. To solve these problems, we propose a modified handmade cloning (mHMC) technique that uses simple laboratory equipment, i.e., a Pasteur pipette and an alcohol lamp, applying it to porcine embryo cloning. To validate the application of mHMC to pig cloning, embryos produced through SCNT and mHMC are compared using multiple methods, such as enucleation efficiency, oxidative stress, embryo developmental competence, and gene expression. The results show no significant differences between techniques except in the enucleation efficiency. The 8-cell and 16-cell embryo developmental competence and Oct4 expression levels exhibit significant differences. However, the blastocyst rate is not significantly different between mHMC and SCNT. This study verifies that cloned embryos derived from the two techniques exhibit similar generation and developmental competence. Thus, we suggest that mHMC could replace SCNT for simpler and cheaper porcine cloning.

Hypomethylation of DNA in Nuclear Transfer Embryos from Porcine Embryonic Germ Cells

  • Lee, Bo-Hyung;Ahn, Kwang-Sung;Heo, Soon-Young;Shim, Ho-Sup
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • Epigenetic modification including genome-wide DNA demethylation is essential for normal embryonic development. Insufficient demethylation of somatic cell genome may cause various anomalies and prenatal loss in the development of nuclear transfer embryos. Hence, the source of nuclear donor often affects later development of nuclear transfer (NT) embryos. In this study, appropriateness of porcine embryonic germ (EG) cells as karyoplasts for NT with respect to epigenetic modification was investigated. These cells follow methylation status of primordial germ cells from which they originated, so that they may contain less methylated genome than somatic cells. This may be advantageous to the development of NT embryos commonly known to be highly methylated. The rates of blastocyst development were similar among embryos from EG cell nuclear transfer (EGCNT), somatic cell nuclear transfer (SCNT), and intracytoplasmic sperm injection (ICSI) (16/62, 25.8% vs. 56/274, 20.4% vs. 16/74, 21.6%). Genomic DNA samples from EG cells (n=3), fetal fibroblasts (n=4) and blastocysts from EGCNT (n=8), SCNT (n=14) and ICSI (n=6) were isolated and treated with sodium bisulfite. The satellite region (GenBank Z75640) that involves nine selected CpG sites was amplified by PCR, and the rates of DNA methylation in each site were measured by pyrosequencing technique. The average methylation degrees of CpG sites in EG cells, fetal fibroblasts and blastocysts from EGCNT, SCNT and ICSI were 17.9, 37.7, 4.1, 9.8 and 8.9%, respectively. The genome of porcine EG cells were less methylated than that of somatic cells (p<0.05), and DNA demethylation occurred in embryos from both EGCNT (p<0.05) and SCNT (p<0.01). Interestingly, the degree of DNA methylation in EGCNT embryos was approximately one half of SCNT (p<0.01) and ICSI (p<0.05) embryos, while SCNT and ICSI embryos contained demethylated genome with similar degrees. The present study demonstrates that porcine EG cell nuclear transfer resulted in hypomethylation of DNA in cloned embryos yet leading normal preimplantation development. Further studies are needed to investigate whether such modification affects long-term survival of cloned embryos.

Multidetector CT Characteristics of Fumarate Hydratase-Deficient Renal Cell Carcinoma and Papillary Type II Renal Cell Carcinoma

  • Ling Yang;Xue-Ming Li;Ya-Jun Hu;Meng-Ni Zhang;Jin Yao;Bin Song
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.1996-2005
    • /
    • 2021
  • Objective: To investigate the multidetector computed tomography (MDCT) features of fumarate hydratase-deficient renal cell carcinoma (FH-deficient RCC) with germline or somatic mutations, and compare them with those of papillary type II RCC (pRCC type II). Materials and Methods: A total of 24 patients (mean ± standard deviation, 40.4 ± 14.7 years) with pathologically confirmed FH-deficient RCC (15 with germline and 9 with somatic mutations) and 54 patients (58.6 ± 12.6 years) with pRCC type II were enrolled. The MDCT features were retrospectively reviewed and compared between the two entities and mutation subgroups, and were correlated with the clinicopathological findings. Results: All the lesions were unilateral and single. Compared with pRCC type II, FH-deficient RCC was more prevalent among younger patients (40.4 ± 14.7 vs. 58.6 ± 12.6, p < 0.001) and tended to be larger (8.1 ± 4.1 vs. 5.4 ± 3.2, p = 0.002). Cystic solid patterns were more common in FH-deficient RCC (20/24 vs. 16/54, p < 0.001), with 16 of the 20 (80.0%) cystic solid tumors having showed typical polycystic and thin smooth walls and/or septa, with an eccentric solid component. Lymph node (16/24 vs. 16/54, p = 0.003) and distant (11/24 vs. 3/54, p < 0.001) metastases were more frequent in FH-deficient RCC. FH-deficient RCC and pRCC type II showed similar attenuation in the unenhanced phase. The attenuation in the corticomedullary phase (CMP) (76.3% ± 25.0% vs. 60.2 ± 23.6, p = 0.008) and nephrographic phase (NP) (87.7 ± 20.5, vs. 71.2 ± 23.9, p = 0.004), absolute enhancement in CMP (39.0 ± 24.8 vs. 27.1 ± 22.7, p = 0.001) and NP (50.5 ± 20.5 vs. 38.2 ± 21.9, p = 0.001), and relative enhancement ratio to the renal cortex in CMP (0.35 ± 0.26 vs. 0.24 ± 0.19, p = 0.001) and NP (0.43 ± 0.24 vs. 0.29 ± 0.19, p < 0.001) were significantly higher in FH-deficient RCC. No significant difference was found between the FH germline and somatic mutation subgroups in any of the parameters. Conclusion: The MDCT features of FH-deficient RCC were different from those of pRCC type II, whereas there was no statistical difference between the germline and somatic mutation subgroups. A kidney mass with a cystic solid pattern and metastatic tendency, especially in young patients, should be considered for FH-deficient RCC.

Phenotypic characterization of Hanwoo (native Korean cattle) cloned from somatic cells of a single adult

  • Yang, Byoung-Chul;Lee, Seung-Hwan;Hwang, Seong-Soo;Lee, Hwi-Cheul;Im, Gi-Sun;Kim, Dong-Hoon;Lee, Dong-Kyeong;Lee, Kyung-Tai;Jeon, Ik-Soo;Oh, Sung-Jong;Park, Soo-Bong
    • BMB Reports
    • /
    • v.45 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • We investigated phenotypic differences in Hanwoo cattle cloned from somatic cells of a single adult. Ten genetically identical Hanwoo were generated by somatic cell nuclear transfer from a single adult. Weights at birth, growing pattern, horn and noseprint patterns were characterized to investigate phenotypic differences. The weights of clones at 6 and 12 months were slightly heavier than that of the donor. A horn pattern analysis revealed that seven clones had exactly the same horn pattern as the donor cow, whereas three were different. Although similarities such as general appearance can often be used to identify individual cloned animals, no study has characterized noseprint patterns for this end. A noseprint pattern analysis of all surviving clones showed that all eight animals had distinct noseprints. Four were similar to the donor, and the remaining four had more secondary-like characteristics.

Effect of Abscisic Acid on the Number of Somatic Embryo Cotyledons in Tissue Cultures of Aralia cordata Thunb. (땅두릅(Aralia cordata Thunb.)의 조직배양에서 체세포배의 자엽 수 변화에 미치는 ABA의 영향)

  • 이강섭;소웅영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.287-291
    • /
    • 1994
  • In order to elucidate the effect of abscisic acid (ABA) on the abnormality of somatic embryos, somatic embryos were induced from embryogenic cell clumps derived from cotyledon segment of Aralia cordata. When embryogenic cell clumps were pretreated medium containing 0.2 mg/L ABA for 3 weeks before transferring to MS basal medium, the frequency of embryos with normal cotyledons enhanced 68% as compared with control. However when clumps pretreated in medium containing 0.2 mg/L ABA were transferred to medium containing 0.1 mg/L ABA, the Sequency decreased to about 29%. In the case of globular embryos cultures in medium containing various concentrations of ABA (0.01 to 1.0mg/L), the frequency of dicotyledonary embryo formation decreased propotionally to ABA concentration. Also, when somatic embryos at various stages were cultured in medium containing ABA, those with polycotyledons appeared at higher frequency.

  • PDF

Potato breeding via protoplast fusion (원형질체 융합을 이용한 감자 육종)

  • Cho, Kwang-Soo;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.65-72
    • /
    • 2014
  • Plant cells from which the cell walls have been enzymatically or mechanically removed are called protoplasts. The protoplasts are theoretically totipotent and can be used as sources of somatic cell fusion in practical breeding programs. Wild Solanum species have often been used as sources of important agricultural traits including diverse disease resistance. However, they cannot often be directly applied to breeding programs due to their sexual incompatibility with S. tuberosum. Somatic hybridization via protoplast fusion is one of the ideal methods to overcome this limitation and to introgress certain traits into S. tuberosum. This technique has still widely been used in potato since the first fusion was reported in 1970s. Therefore, this review highlights general perspectives of protoplast fusion and discusses the application of protoplast fusion in potato breeding.

Effect of Subclinical Mastitis on Milk of Cross Bred Sahiwal × Jersey Cows: A Biochemical Study

  • Kalorey, D.R.;Kurkure, N.V.;Nigot, N.K.;Patil, M.P.;Pathak, V.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.382-383
    • /
    • 2001
  • The experiment was undertaken to study the effect of subclinical mastitis on the biochemical parameters of milk in crossbred (Sahiwal $\times$ Jersey) cows. Subclincial mastitis was judged using California Mastitis Test and graded on a scale of 0 to 2. Twenty six milk samples of each grade were subjected to somatic cell count. Separated milk whey was analysed for total protein, immunoglobulin and trace mineral content. Results indicate linear increases in somatic cell count, total protein and immunoglobulin concentrations in milk with increase in grade of subclinical mastitis. However, copper, zinc, manganese and iron concentration in milk was not affected by grade of mastitis.

Current Status of Comparative Mapping in Livestock

  • Lee, J.H.;Moran, C.;Park, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1411-1420
    • /
    • 2003
  • Comparative maps, representing chromosomal locations of homologous genes in different species, are useful sources of information for identifying candidate disease genes and genes determining complex traits. They facilitate gene mapping and linkage prediction in other species, and provide information on genome organization and evolution. Here, the current gene mapping and comparative mapping status of the major livestock species are presented. Two techniques were widely used in comparative mapping: FISH (Fluorescence In Situ Hybridization) and PCR-based mapping using somatic cell hybrid (SCH) or radiation hybrid (RH) panels. New techniques, using, for example, ESTs (Expressed Sequence Tags) or CASTS (Comparatively Anchored Sequence Tagged Sites), also have been developed as useful tools for analyzing comparative genome organization in livestock species, further enabling accurate transfer of valuable information from one species to another.

Apnea of Somatic Cell Cloned Piglets with Congestion is Caused by Cardiopulmonary

  • Lee, So-Young;Park, Mi-Ryeung;Cho, Seong-Keun;Park, Yun-Jung;Kwon, Deug-Nam;Lee, Eun-Kyeong;Son, Woo-Jin;Kim, Jin-Hoi
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.186-186
    • /
    • 2004
  • In this study, we generated 40 somatic cell cloned (scNT) piglets. Of these, three displayed congestion in both liver and lung, and died within the first week of life. Two-dimensional gel electrophoresis experiments revealed changes in the responses of several detoxification-related proteins to stress and inflammation. As a result, congestive livers and lungs displayed extensive hepatopneumonic apoptosis.(omitted)

  • PDF

The Production of Transgenic Livestock and Its Applications

  • Han, Y. M;Lee, K. K.
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.4
    • /
    • pp.381-391
    • /
    • 1999
  • During the last 20 years, transgenic animal technology has provided revolutionary new opportunities in many aspects of agriculture and biotechnology. Several gene delivery systems including pronuclear injection, retroviral vectors, sperm vectors, and somatic cell cloning have developed for making transgenic animals. In the future major improvements in transgenic animal generation will be mainly covered by somatic cell cloning technology. Many factors affecting integration frequency and expression of the transgenes should be overcome to facilitate the industrial applications of transgenic technology. Transgenic animal technology has settled down in some areas of the biotechnology, especially the mass production of valuable human proteins and xenotransplantation. In the 21st century animal biotechnology will further contribute to welfare of human being.

  • PDF