• 제목/요약/키워드: Solvolyses

검색결과 66건 처리시간 0.068초

Marked Difference in Solvation Effects and Mechanism between Solvolyses of Substituted Acetylchloride with Alkyl Groups and with Aromatic Rigns in Aqueous Fluorinated Alcohol and in 2,2,2-Trifluoroethanol-Ethanol Solvent Systems

  • Oh, Yung-Hee;Jang, Gyeong-Gu;Lim, Gyi-Taek;Ryu, Zoon-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권8호
    • /
    • pp.1089-1096
    • /
    • 2002
  • Solvolyses rate constants of trimethylacetyl chloride (2), isobutyryl chloride (3), diphenylacetyl chloride (4) and p-methoxyphenylacetyl chloride (5) in 2,2,2-trifluoroethanol (TFE)-water, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-water and TFE-et hanol solvent systems at $10^{\circ}C$ are determined by a conductimetric method. Kinetic solvent isotope effects (KSIE) are reported from additional kinetic data for methanolyses of various substituted acetylchlorides in methanol According to the results of those reactions analyzed in terms of rate-rate profiles,extended Grunwald-Winstein type correlations, application of a third order reaction model based a general base catalyzed (GBC) and KSIE values. Regardless of the kind of neighboring groups (CH3- or Ph-groups) of reaction center, for aqueous fluorinated alcohol systems, solvolyses of 2, 3, 4, and 5 were exposed to the reaction with the same mechanism (a loose SN2 type mechanism by electrophilic solvation) controlled by a similarity of solvation of the transition sate (TS). Whereas, for TFE-ethanol solvent systems, the reactivity depended on whether substituted acetyl chloride have aromatic rings (Ph-) or alkyl groups (CH3-); the solvations by the predominant stoichiometric effect (third order reaction mechanism by GBC and/or by push-pull type) for Ph- groups (4 and 5) and the same solvation effects as those shown in TFE-water solvent systems for CH3- groups (2 and 3) were exhibited Such phenomena can be interpreted as having relevance to the inductive effect ( $\sigmaI)$ of substituted groups; the plot of log (KSIE) vs. ${\sigma}I$ parameter give an acceptable the linear correlation with r = 0.970 (slope = 0.44 $\pm$ 0.06, n = 5).

Applications of Third Order Models in Solvolytic Reaction of Aliphatic Substituted Acyl Derivatives in 2,2,2-Trifluoroethanol-Ethanol Systems

  • Ryu, Zoon-Ha;Lim, Gui-Taek;Bentley, T. William
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권9호
    • /
    • pp.1293-1302
    • /
    • 2003
  • Rate constants at various temperatures and activation parameters are reported for solvolyses of acyl chlorides (RCOCl), with R = Me, Et, i-Pr, t-Bu, cyclopentylmethyl, benzyl, thiophenylmethyl, 2-phenylethyl, diphenylmethyl, and phenylthiomethyl in 100% ethanol, 100% 2,2,2-trifluoroethanol (TFE), 80% v/v ethanol/ water and 97% w/w TFE/water. Additional rate constants for solvolyses with R = Me, t-Bu, and $PhCH_2$ are reported for TFE/water and TFE/ethanol mixtures, and for solvolyses with R = t-Bu, and PhCH2 are reported for 1,1,1,3,3,3-hexafluoropropan-2-ol/water mixtures, as well as selected kinetic solvent isotope effects (MeOH/MeOD and TFE). Taft plots show that electron withdrawing groups (EWG) decrease reactivity significantly in TFE, but increase reactivity slightly in ethanol. Correlation of solvent effects using the extended Grunwald-Winstein (GW) equation shows an increasing sensitivity to solvent nucleophilicity for EWG. The effect of solvent stoichiometry in assumed third order reactions is evaluated for TFE/ethanol mixtures, which do not fit well in GW plots for R = Me, and t-Bu, and it is proposed that one molecule of TFE may have a specific role as electrophile; in contrast, reactions of substrates containing an EWG can be explained by third order reactions in which one molecule of solvent (ethanol or TFE) acts as a nucleophile, and a molecule of ethanol acts as a general base catalyst. Isokinetic relationships are also investigated.

Correlation of the Rates of Solvolysis of 1-Piperidincarbonyl Chloride Using the Extended Grunwald-Winstein Equation

  • Choi, Ho-June;Ali, Dildar;Lee, Jong-Pal;Yang, Ki-Yull;Park, Jong-Keun;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.3941-3946
    • /
    • 2011
  • The specific rates of sovolysis of 1-piperidincarbonyl chloride (1) have been determined in 26 pure and binary solvents at $25.0^{\circ}C$. Comparison of the specific rates of solvolyses of 1 with those for p-methoxybenzoyl chloride and those for 4-morpholinecarbonyl chloride in terms of linear free energy relationships (LFER) are helpful in mechanistic considerations, as is also treatment in terms of the extended Grunwald-Winstein equation. It is proposed that the solvolyses of 1 in binary aqueous solvent mixtures proceed through an ionization [I] pathway rather than through an $S_N1/S_N2$ and/or ionization/(ionization-elimination) = [I/(I-E)] pathway.

Stoichiometric Solvation Effects. Solvolysis of Isopropylsulfonyl Chloride

  • Koo, In-Sun;Yang, Ki-Yull;Shin, Hyeon-Bae;An, Sun-Kyoung;Lee, Jong-Pal;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.699-703
    • /
    • 2004
  • Solvolyses of isopropylsulfonyl chloride (IPSC) in water, D_2O,\;CH_3OD$, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25, 35 and 45$^{\circ}C$. The Grunwald-Winstein plot of first-order rate constants for the solvolytic reaction of IPSC with $Y_{Cl}$ (based on 2-adamantyl chloride) shows marked dispersions into three separate lines for three aqueous mixtures with a small slope (m < 0.30). The extended Grunwald-Winstein plots for the solvolysis of IPSC show better correlation. The kinetic solvent isotope effects determined in water and methanol are in consistent with the proposed mechanism of the general base catalyzed and/or $S_AN/S_N2$ reaction mechanism for IPSC solvolyses based on mass law and stoichiometric solvation effect studies.